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ZONE OF INTRUSION FOR PERMANENT 9.1° SINGLE-SLOPE CONCRETE 

BARRIERS 

Cale Stolle M.S. 

University of Nebraska, 2013 

Advisor: John D. Reid 

 

Three WDOT 9.1-degree single-slope concrete barriers, with top heights of 36 in. 

(914 mm), 42 in. (1,067 mm), and 56 in. (1,422 mm) (Standard 14B32), were analyzed 

for Zone of Intrusion (ZOI)’ and working width using nonlinear finite element analysis 

(FEA). Tire-barrier friction, vehicle-barrier friction, barrier stiffness, mesh size, tire 

deflation, and suspension component failures were all found to have effects on simulation 

results. The zone of intrusion and working width were evaluated for each barrier under 

varying tire deflation and suspension failure conditions and determined to have a 

maximum value of 12.2 in. (310 mm) for the front fender and 9.4 in. (240 mm) for the 

rest of the vehicle. The working width for each barrier was determined to be 24 in. (610 

mm). 
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1 INTRODUCTION 

1.1 Background 

Roadside barriers are designed to prevent vehicles from impacting hazards located 

behind the barrier. Some roadways require the roadside barriers to be constructed 

immediately in front of a hazard (such as next to a bridge pier) or call for objects to be 

placed on top of a barrier (such as a luminaire pole mounted on a barrier). In these 

situations, an errant vehicle impacting the roadside barrier risks contacting the hazard 

located directly behind or on top of the barrier. For this reason, a measure called the zone 

of intrusion (ZOI) was developed. ZOI is defined as the maximum distance that the 

vehicle protrudes behind the top front corner of the barrier.  

If a ZOI value is adequate, any hazard placed outside of the ZOI of a barrier will 

not pose additional risk to the occupant. Underestimating a ZOI value means that the 

occupant may be injured in the event of a severe impact. Overestimating a ZOI value may 

result in greater costs for state transportation departments in accommodating for roadside 

hazards.  

In 2009, the Manual for Assessing Safety Hardware (MASH) was published by 

the American Association of State Highway Transportation Officials (AASHTO), and it 

detailed crash testing standards to be used in all full-scale crash tests [1]. MASH 

standards expanded on previous crash-testing requirements found in the National 

Cooperative Highway Research Program (NCHRP) Report No. 350 [2]. According to 

Test Level 3 (TL-3) conditions specified in MASH, a 5,000-lb (2,270-kg) pickup truck 

must be full-scale crash tested at 62 mph (100 km/h) and 25 degrees into a longitudinal 

barrier in order to verify that the roadside barrier is acceptable for placement along state 
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highways. These impact conditions represented one of the most severe impact cases 

observed on the roadway system. Thus, these crash testing conditions are used to 

determine the ZOI of a longitudinal barrier.  

The Wisconsin State Department of Transportation (WDOT) wished to design 

and install a California 9.1-degree single-slope barrier along its roadways. To best 

understand the impact performance of this barrier, state transportation officials requested 

that the ZOI be estimated for the 9.1-degree single-slope barrier with barrier heights of 36 

in. (914 mm), 42 in. (1,067 mm), and 56 in. (1,422 mm) using computer simulation.  

Finite element simulations represent a cost-effective means of analyzing multiple 

impact scenarios compared to prohibitive full-scale crash testing. Due to the severity of 

concrete barrier impacts, a variety of vehicle behavior has been observed, including that 

(1) with no tire or suspension failure, (2) with tire deflation, (3) with suspension failure, 

and (4) with tire deflation and suspension failure. The maximum ZOI determined from 

these four impact scenarios would give an estimate of the maximum ZOI of each barrier 

system. 

1.2 Project Objective 

Zone of intrusion values were estimated for the Wisconsin 9.1-degree single-slope 

barrier at heights of 36, 42, and 56 in. (914, 1,067, and 1,422 mm). Impacts with tire 

deflation and various suspension failure scenarios were evaluated, and the maximum ZOI 

values were estimated from each simulation.  
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2 PROCEDURE 

To complete this project, several steps were undertaken: 

1. A literature review was conducted to review recent testing on concrete 

barriers.  

2. The interaction between an impacting vehicle and a concrete barrier was 

extensively reviewed from full-scale crash testing results. 

3. A simplified vehicle model was developed to establish phases of impact 

and understand which forces affect vehicle trajectory during each phase.  

4. A series of simulations were conducted utilizing a Silverado truck model 

to compare impact behavior to results observed in full-scale tests. 

Parameter studies were performed to determine how friction and model 

changes affect the simulated ZOI. 

5. Simulations were performed at severe conditions to evaluate the ZOI and 

working width for three heights of single-slope barrier using various 

suspension failure conditions, consisting of tire deflation and joint failures. 

6. Conclusions were drawn pertaining to ZOI and working width. Future 

work was also recommended. 
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3 LITERATURE REVIEW 

3.1 Introduction 

Simulations are a cost-effective means of inspecting complicated dynamic events. 

However, improperly constrained or inaccurately defined simulations may generate 

unrealistic results. Because of this, researchers must make a strong effort to compare 

simulation results to full-scale testing and confirm that the results seen in the simulations 

are realistic.  

Full-scale crash testing and research studies were reviewed to better understand 

the concrete barrier, the zone of intrusion, and the interaction between an errant vehicle 

and a rigid concrete barrier. Barriers were studied by shape, and comparisons were made 

between similar shapes.  

3.2 Concrete Barrier Testing History 

A literature review was conducted to review concrete barrier testing and ZOI 

studies [3]. Full-scale crash tests of permanent and restrained-motion concrete barriers 

were reviewed to determine the vehicle-to-barrier interaction during the crash sequence 

and to provide a basis to develop a simulation model. Different barrier types were 

reviewed and compared to determine the vehicle stability and protrusion for each barrier 

shape. 

The New Jersey barrier, which was the first non-vertical concrete barrier to gain 

nationwide acceptance for its crashworthiness, was originally intended to be evaluated at 

impact angles lower than 15 degrees. However, for the past 20 years, all of the full-scale 

crash tests obtained during the literature review were conducted at impact angles of 20 
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degrees or more; furthermore, current testing utilizes 25 degree impacts for passenger 

vehicles. 

The impact performance of shaped concrete barriers varies at different impact 

angles. At higher impact angles, the vehicle’s front fender impacts the barrier first and 

begins to crush. At lower impact angles, the tire impacts the toe of the barrier first and 

begins climbing the barrier. Combined with frictional force effects, suspension 

compression characteristics, and full-body vehicle rotational motion, the behavior of low-

angle impacts greatly diverges from higher-angle impacts, with significantly different 

effects on vehicle trajectory and vehicle damage. However, it is believed that the ZOI is 

greatest for higher-angle impacts. Thus, the lack of testing at different impact angles may 

not affect this study. 

There are two types of commonly-installed single-slope barrier configurations. 

Texas developed a single-slope barrier with a slope of 10.8 degrees on its front face [4]. 

This barrier has been tested under both MASH and NCHRP Report no. 350 standards and 

has been determined to be acceptable in both cases [5-6]. California developed a single 

slope barrier with a slope of 9.1 degrees on its front face. The California State 

Transportation Department (Caltrans) tested this barrier extensively under NCHRP 

Report no. 350 standards but did not evaluate the barrier using MASH vehicles [7-9]. By 

comparing the test results on the 9.1-degree barrier to the 10.8-degree barrier, it was 

shown that, for 2000P vehicles impacting at 62 mph (100 km/h) and 25 degrees, the 9.1-

degree barrier demonstrated improved stability and lower lateral accelerations, as well as 

lower vehicle roll angles. However, the 9.1-degree barrier showed higher filtered 
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longitudinal accelerations and was in contact with the barrier for longer than the 10.8-

degree barrier.  

3.3 ZOI Studies 

In 2003, a report was published by the Midwest Roadside Safety Facility 

(MwRSF) discussing barrier attachments and their effect on impacting vehicles [10]. 

Researchers noted that breakaway and rigid attachments to barrier may penetrate into the 

occupant compartment or cause excessive vehicle accelerations. Both of these conditions 

are hazardous to the occupants, and cause the system to fail the full-scale crash criteria 

set forth in MASH and NCHRP Report No. 350. A few examples of hazards located 

within the zone of intrusion are shown in Figure 1. 
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Figure 1. Hazards Located Within the Zone of Intrusion  
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According to the barrier attachments report published by MwRSF, occupant 

safety depends on how much vehicle structure protrudes behind the top front corner of 

the barrier. Stiff, structural vehicle component impacts against vertical elements on top of 

or behind the barrier will cause greater risk to the occupants than impacts from weak 

vehicle components. It was up to the discretion of the researchers to determine which 

critical vehicle component was used to determine the ZOI during those tests. Often, the 

chosen ZOI utilized the corner of the vehicle’s engine hood.  

In 2008, MwRSF published a follow-up study to the barrier attachments research 

[11]. Three full-scale tests were conducted on a 32-in. (813-mm) tall, 10.8-degree single-

slope concrete barrier, as shown in Figure 2. A luminaire pole was mounted on top of the 

barrier inside the ZOI. For the first test, a 17,605-lb (7,985-kg) single-unit truck (SUT) 

impacted the barrier system 55 ft (16.8 m) upstream of the centerline of the luminaire 

pole, shown in Figure 2a. The vehicle struck the pole, and the pole was dislodged. 

Researchers determined that the test was acceptable and that the impact with the 

luminaire pole did not cause significant risk to the occupants.  
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(a) ZOI-1 

 

 
(b) ZOI-2 

 

 
(c) ZOI-3 

Figure 2. Zone of Intrusion Tests ZOI-1, ZOI-2, and ZOI-3 [11]
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For the second test, a 4,430-lb (2,009-kg) pickup truck impacted the system 11 ft 

(3.4 m) upstream of the centerline of the luminaire pole. The corner of the vehicle hood 

briefly contacted the pole, and the vehicle was redirected away from the system. The test 

was determined to be acceptable, although the head ejection effects were not determined 

since no dummy was used in the full-scale crash test.   

For the third test, a 17,637-lb (8,000-kg) SUT impacted the single-slope barrier 54 

ft 6 in. (16.6 m) upstream of the centerline of the pole. The vehicle struck the pole, but it 

was not enough force to cause the pole to be dislodged, and no adverse effects were noted 

on the vehicle due to the impact with the pole.  

MwRSF researchers also developed guidelines for head ejection criteria [12]. 

During an impact with a roadside barrier, researchers noticed that the occupant’s head 

will occasionally protrude through the impact-side window, potentially impacting hazards 

outside of the vehicle. Thus, an envelope was created based on measured head 

protrusions of dummies during full-scale crash tests, as shown in Figure 3. For barriers to 

meet the head ejection criteria, no hazard may be placed inside the envelope.  
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Figure 3. Head Ejection Envelope [12] 

In 2011, the Texas A&M Transportation Institute (TTI) published a report 

detailing a study on placing objects inside the ZOI [13]. A rigid, non-breakaway sign was 

installed at a joint between two temporary concrete barriers. During the test, the front 

fender and door contacted the sign while the unrestrained temporary barriers deflected 

4.3 ft (1.3 m). The maximum working width was 10.2 ft (3.1 m) with the deflection of the 

sign panel. During the test, the vehicle penetration behind the barrier and climb up the 

barrier was insignificant. It is unknown if a restrained barrier system with a similar sign 

configuration would have passed with similar results. 

At the conclusion of the study, TTI researchers determined that it was possible to 

construct fixed, non-breakaway systems inside the ZOI of a barrier. However, each 

system must be evaluated independently with full-scale crash testing in order to be 

approved. No dummy was used in this full-scale crash test, and the setup may likely have 
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caused injury to an occupant if the occupant’s head protruded out of the window during 

the crash. 

Similar studies have had similar results. In 2007, MwRSF conducted a test on a 

concrete bridge pier protection system [14]. The barrier consisted of a 32-in. (813-mm) 

tall, vertical-faced permanent concrete barrier with bridge piers located 16¾ in. (425 mm) 

behind the front face of the barrier. As determined by overhead video analysis, the 

vehicle hood protruded 19.8 in. (503 mm) beyond the front face of the barrier and struck 

the bridge pier, as shown in Figure 4. This behavior did not negatively affect the test, and 

after some deformation of the vehicle hood, the vehicle continued to redirect 

downstream. The occupant safety was not compromised during the test. Once again, no 

dummy was used during this test, so it is unknown as to whether or not the system would 

have passed if a dummy was placed in the vehicle. 
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Figure 4. Impacting a Bridge Pier in the ZOI 

The Florida State Department of Transportation wished to apply ZOI guidelines 

to its 40-in. (1,016-mm) tall, F-shape barrier according to TL-3 standards of NCHRP 

Report No. 350 [15]. The ZOI for the barrier impacted by a 2000P vehicle at 62 mph 

(100 km/h) and at an angle of 25 degrees (equivalent to the TL-3 standards of NCHRP 

Report No. 350) was predicted to be 5 inches. The ZOI estimate determined during this 

study was consistent between the various simulation conditions applied to the model. The 
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ZOI for the barrier impacted by a 2000P vehicle at 45 mph (72 km/h) and at an angle of 

25 degrees (equivalent to the TL-2 standards of NCHRP Report No. 350) is predicted to 

be between 1.8 and 2.5 in. (46 and 64 mm). These numbers were the ZOI extremes 

determined by the different impact conditions, and the variations may be attributed to the 

quality of the model’s mesh and to the system geometry. 

During this study, it was determined that the front hood geometry will extend over 

the top of a 40-in. (1,016-mm) tall, F-shape concrete barrier during impact. Thus, some 

ZOI is inevitable at almost all speeds. However, the ZOI of the 40-in. (1,016-mm) tall 

barrier was restricted to overhang by the front corner of the hood and part of the fender. 

The limited amount of vehicle structure in the ZOI of the barrier may not cause problems 

during an impact event.  

3.3.1 ZOI Values from NCHRP Report No. 350 Testing 

MwRSF researchers presented a table of ZOI values for various TL-3, TL-4, and 

TL-5 rigid bridge rails at different barrier heights [10]. The ZOI values were estimated by 

reviewing video footage from full-scale crash tests performed according to NCHRP 

Report No. 350. Most concrete barrier shapes have been evaluated for TL-3 standards at a 

height of 32-in. (813-mm). These ZOI values are shown in Table 1. The references to the 

tests used to determine the ZOI were provided in Reference 10. 
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Table 1. Barrier ZOI from the MwRSF Barrier Attachments Study [10] 

Barrier Shape 
ZOI 

in. (mm) 

10.8-degree Single-Slope 12 (305) 

F-Shape 8 (203) 

New Jersey 18 (457) 

Vertical Face 15 (381) 

 

3.3.2 ZOI Values from MASH Testing 

ZOI values were obtained for the same barriers tested according to MASH 

standards [3]. Impacts with rigid barrier systems caused higher protrusions than impacts 

with temporary barrier systems. However, there were only two tests conducted on rigid 

concrete barrier systems utilizing MASH testing criteria. It was determined that the full-

scale vehicle trajectory was very similar for impacts with restricted-motion temporary 

barrier systems and for impacts with rigid barrier systems. MASH ZOI data were 

collected from restrained-motion and rigid concrete barrier systems, as shown in Table 2. 

The references to each test used to determine the ZOI were provided in Reference 3.  
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Table 2. ZOI for TL-3 Concrete Barriers According to MASH [3] 

Barrier Shape 
ZOI 

in. (mm) 
Additional Notes 

F-Shape 9 (229) 

This was a temporary barrier system that saw 

significant deflection, despite one end of the barrier 

being fixed. Actual ZOI may be larger. 

New Jersey 15 (381)  

Texas  

10.8-degree  

Single-Slope 

10 (254) 
This test was conducted on a 36-in. (914-mm) tall 

barrier 

Vertical Face 9 (229) 
Temporary barrier system saw mild deflection (less 

than 5 in. [127 mm]) 

California  

9.1-degree 

Single-Slope 

 Not yet tested to MASH standards 

 

The ZOI for these barriers may be misleading. ZOI data shown in Table 2 were 

measured from tests utilizing Dodge Ram pickup trucks, which have a front-end 

geometry that is very dissimilar to other pickup trucks on the roadway today. For the 

Dodge Ram pickup truck, the hood is rigidly attached to the grill of the vehicle, and the 

hood is trapezoidal in shape, as shown in Figure 5. Some vehicles, such as the Chevy 

Silverado, have rectangular hoods which are more likely to protrude over a barrier upon 

impact, as shown in Figure 6. Thus, the actual ZOI may be larger than the ones shown in 

Table 2. 
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Figure 5. Dodge Ram Hood and Fender Geometry 

  
 

Figure 6. Chevy Silverado Hood and Fender Geometry 

3.4 In-Depth Suspension Behavior Analysis 

The behavior of the vehicle suspension during the full-scale impact affects the 

overall trajectory and damage to the vehicle. Unfortunately, test footage of the tire and 

suspension damage is difficult to analyze because the impact occurs relatively quickly, 

the tire is in the shadows during the impact, and the views are rarely zoomed-in to see the 

impact closely. To gain insight into the interaction between the vehicle tire and the 

barrier, the damage to a vehicle suspension was documented and compared to high-speed 

video. 
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3.4.1.1 Damage Documentation 

Test No. PCMB-1 was conducted on a 32-in. (812-mm) tall,h F-shape barrier 

using a Dodge Ram Quad Cab 1500 vehicle [16]. Damage to the impacting wheel 

consisted of rim deformation, scuffing, contact marks, and tire tearing. The ball 

connection attaching the wheel to the lower control arm was bent forward, as shown in 

Figure 7. There was no fracture of any of the ball joints on the wheel assembly, and it 

appeared that the suspension failed when the ball joints pulled out of their respective 

sockets. 

 Scraping occurred along the rim at the bottom of the ball joint bolts for the lower 

control arm and steering link. The rim was dented in ¾ in. (19 mm) at the impact location 

of the tire with the barrier, and scuffs were found at the dent in the rim. This damage was 

consistent with the rim contacting the concrete barrier. 

The impacting tire was deflated, and a 7¾-in. by 3¼-in. (197-mm by 83-mm) 

section of tire was missing from the sidewall, as shown in Figure 8. The missing tire 

section occurred close to the dent in the rim, signifying that the tire section and the rim 

damage may have occurred simultaneously.  

Suspension damage was noted on the impact-side of the vehicle. The lower 

control arm was bent downward ¼ in. (6 mm) at the rear near the connection to the 

shock. The plastic ball joint socket on the lower control arm was fractured, as shown in 

Figure 9. Also, the metal ring around the outside of the plastic ball joint deformed. This 

damage was consistent with the ball being pulled out of the joint while applying a large 

longitudinal force on the lower control arm ball joint. No damage was noted on the lower 

control arm at the connection between the lower control arm and the vehicle frame. 
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Cylindrical metal sleeves connecting the lower control arm to the vehicle frame were not 

damaged, but the lower control arm shifted to the rear on these sleeves shown in Figure 

10. Also, the bolt holding the rear metal sleeve in place was bent. The connection slip and 

the damage to the lower control arm and joint are consistent with large longitudinal 

forces acting on the component as the wheel impacted the barrier. The forces would have 

caused the connections to slide out of place and would have bent the rear arm of the 

lower control arm. 

The rubber bump stop did not experience any permanent deformation, although 

the rubber showed signs of contact at the tip of the cone, as shown in Figure 11. After 

closely inspecting the bump stop, the extent of the deflection of the bump stop was 

indeterminable. However, bending and deformation of the steel ring around the bump 

stop were found. This damage was consistent with the bump stop being fully compressed 

and the metal ring around the bump stop contacting the lower control arm.  

The upper control arm was bent toward the rear of the vehicle, as shown in Figure 

11. Damage to the upper control arm was consistent with a large lateral and longitudinal 

load being applied to the component. Also, the rear connecting bolt for the upper control 

arm was bent slightly. However, no other damage was noted on the upper control arm. 

The link connecting the roll bar to the lower control arm was bent, as shown in 

Figure 12. Also, the impact side of the roll bar was twisted and bent downward. The roll 

bar shifted ⅛ in. (3 mm) toward the impacting side, as determined from the scrape marks 

seen around the link connecting the roll bar to the frame of the vehicle, shown at the 

bottom of Figure 12. 
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Figure 7. Inside of Wheel Damage, Test No. PCMB-1 
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Figure 8. Outside of Wheel Damage, Test No. PCMB-1
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Figure 9. Lower Control Arm Damage, Test No. PCMB-1
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Front Connection Slip (View looking toward longitudinal centerline of vehicle) 

 

 
Rear Connection Slip (View looking toward longitudinal centerline of vehicle) 

 

Figure 10. Lower Control Arm Connection Slip, Test No. PCMB-1
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Figure 11. Bump Stop and Upper Control Arm Damage, Test No. PCMB-1
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Figure 12. Roll Bar and Connecting Pin Damage, Test No. PCMB-1 
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3.4.1.2 Damage Interpretation 

The impact damage to the wheel was reviewed in conjunction with the full-scale 

crash test footage to determine how the damage occurred. At impact, the tire tread 

contacted and mounted the barrier toe, climbing up the lower sloped face of the barrier. 

As the tire climbed, the base of the tire compressed and the wheel vertical deflection was 

insignificant compared to the tire deformation. Based on the vertical deflection of the 

center of the rim, the suspension did not significantly deflect. As the tire compressed, the 

sidewalls bulged out around the impact location. The tire sidewall was pinched between 

the wheel rim and the concrete barrier, causing the rubber to rupture, the tire to deflate, 

and a piece of the sidewall to disengage. Contact occurred between the rim and the 

concrete barrier, which dented and scraped the edge of the rim.  

The wheel continued to climb up the barrier, reaching the top of the lower slope 

and impacting the upper slope. The vehicle suspension compressed significantly as the 

wheel began to climb up the upper slope of the F-shape barrier. Also, the bottom of the 

wheel was pushed inward, showing that the lower control arm was deforming. When the 

top of the tire impacted the upper slope, the top of the wheel deflected toward the center 

of the vehicle, showing that the upper control arm was deforming. Very soon after this, 

the steering link was seen removed from the vehicle. The non-impact tire was noted to be 

traveling straight forward, while the impact tire turned away from the barrier sharply. 

Based on the reaction of the other tire, it appears that the steering link did not transmit 

significant force, and likely disengaged from the vehicle quickly after impact. As the 

vehicle deflected upward, the tire was squeezed between the vehicle and the upper slope. 
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Friction between the tire and the barrier pulled the tire downward, and disengaged the 

wheel from the three ball joints holding it to the suspension.  

3.4.1.3 Damage Summary 

Tire and suspension damage incurred in test no. PCMB-1 is not indicative of the 

damage noted in other concrete barrier tests with the 2270P vehicle, and may not be 

reproducible with a similar system, impact conditions, and vehicle. While the events of 

test no. PCMB-1 differed from other tests, there were many similarities between the tire 

and suspension damage noted in this test and the damage documented in other full-scale 

crash tests with concrete barriers. First of all, large rearward forces are transmitted by the 

wheel through the joints and into the vehicle. This force may cause damage in both the 

upper and lower control arms. Second, the rubber bump stop fully compressed. Third, the 

roll bar did not act as a rigid object, but rather proved itself to be dynamic and plastic in 

concrete barrier impacts. Lastly, the tire deformed greatly as it impacted the barrier, and 

the tire sidewall bulged out at the impact location. The rim contacted the barrier and 

pinched the tire, causing the tire to rupture at the impact point between the wheel and the 

sloped barrier. 

3.5 Suspension Damage for 2270P Pickup Trucks 

In order to understand the tire-barrier interaction during a full-scale test, 

suspension damage was documented from many full-scale concrete barrier crash tests 

utilizing 2270P pickup trucks. Unfortunately, due to the limited amount of testing that 

has been conducted with 2270P vehicles on concrete barrier systems, only testing results 

utilizing a Dodge Ram 1500 Quad Cab pickup truck were available. Pictures and 

documentation from each test were reviewed. Damage to each vehicle suspension is 
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noted in Table 3. Since suspension damage documentation was not available from other 

sources, only suspension damage from MwRSF tests were reviewed. 

Table 3. Suspension Damage for Full-Scale Crash Tests with 2270P Vehicles 

Ref. 

No. 
Test Name 

Barrier 

Profile 
Configuration Suspension Damage 

17 NYTCB-1 New Jersey Stiffened 

Lower control arm knuckle fractured 

off 

Tire deflated 

17 NYTCB-2 New Jersey Unrestrained 
Lower control arm knuckle fractured 

Tire deflated 

17 NYTCB-3 New Jersey Stiffened 

Upper control arm ball joint 

separated from the socket 

Lower control arm knuckle fractured 

Tire deflated 

18 KSFRP-1 Vertical Pinned 
Upper control arm knuckle fractured 

Tire deflated 

19 TCBT-1 F-Shape Unrestrained 

Lower control arm knuckle fractured 

Upper control arm ball joint 

separated from the socket 

Tire deflated 

19 TCBT-2 F-Shape Unrestrained 

Lower control arm knuckle fractured 

Upper control arm ball joint 

separated from the socket 

Tire deflated 

20 NYTCB-4 New Jersey Pinned 

Lower control arm knuckle fractured 

Upper control arm ball joint 

separated from the socket 

Tire deflated 

21 NYTCB-5 New Jersey Pinned 

Lower control arm knuckle fractured 

Upper control arm ball joint 

separated from the socket 

Tire deflated 

22 TTCB-1 F-Shape Unrestrained 

Lower control arm knuckle fractured 

Upper control arm ball joint 

separated from the socket 

Tire deflated 

 

Three different barrier configurations were reviewed: stiffened, pinned, and 

unrestrained. Stiffened systems utilized an attachment between joints that reduced joint 

deflection. Pinned systems were connected to the pavement using rods or bolts, 
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preventing lateral movement of the barrier. Unrestrained barrier systems had pinned end 

barriers, but were not pinned or stiffened in the middle barriers.  

Suspension damage was similar for every observed impact between 2270P 

vehicles and F-shape and New Jersey barriers. In each of these tests, three behaviors 

occurred. First, the steering link disengaged from the vehicle. Second, the impacting tire 

deflated. Third, the lower control arm fractured. The initial impact between the bottom of 

the tire and the toe of the barrier is believed to have caused these three behaviors.  

Soon after impact between the bottom of the tire and the toe of the barrier, the 

steering link would separate from the vehicle, sometimes even becoming a projectile. In 

several tests, the steering link was not damaged despite disengaging from the vehicle. 

From this, it was evident that the steering link joint was not constructed to transmit large 

forces. Instead, the steering link joints are created such that they separate before the 

component experiences large-scale plastic deformation.  

Tire deflation was observed during each concrete barrier test as well. In strong-

post guardrail tests, tires may snag on posts, and the flange of the post may puncture the 

tire. However, in concrete barrier systems, there are no sharp edges or objects to deflate 

the tire. Thus, a more careful analysis of the tire failure is necessary to better understand 

what actions cause the tire to deflate. 

Lower control arm failure occurred in each observed impact with F-shape and 

New Jersey concrete barriers. For sloped concrete barriers, the force is transmitted to the 

tire through the bottom part of the tire, which places excessive loads on the rim at the 

bottom. This load exceeds the strength of the lower control arm at the joint, causing shear 

fracture at that location.  
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One vertical barrier test (test no. KSFRP-1) encountered severe upper control arm 

damage. For vertical barriers, the top of the tire is pinned between the vehicle and the 

barrier, and as the vehicle rolls toward the barrier, the tire is pressed into the vehicle, thus 

increasing the load on the upper control arm. Consequently, there was little damage to the 

lower control arm or steering link. 

Only one test was conducted utilizing a 2270P vehicle on a single-slope concrete 

barrier [6]. Documentation on this test did not provide information on the damage to the 

vehicle suspension. Thus, to determine the suspension damage to a vehicle impacting a 

single-slope barrier, the geometry of the barrier was taken into account. Similar to F-

shape and New Jersey concrete barriers, impacting tires would first contact a single-slope 

barrier at the bottom, and the initial force would be transmitted through the lower control 

arm. Thus, it is expected that 2270P vehicle suspension damage would be similar to the 

suspension damage seen in the F-shape and New Jersey concrete barrier tests. 

3.5.1 Free-Standing, Restricted-Motion, and Permanent Barrier Systems 

During an impact sequence, an errant vehicle is successfully redirected after all of 

the vehicle’s lateral energy has been absorbed or transferred to other sources. With metal-

beam guardrail systems, a lot of energy is absorbed through fracture, elastic deformation, 

and plastic deformation of the guardrail and posts. Concrete barriers do not have these 

methods of absorbing energy.  

For segmented, free-standing, unstiffened concrete barrier systems, the lateral 

impact energy of the vehicle is absorbed through several processes. Some energy is 

transferred to the concrete barrier system in the form of kinetic energy as the barriers 

deflect backward, and energy is dissipated through friction as the barrier slides on the 
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ground. Some energy is transmitted into the vehicle roll, pitch, and yaw motions. Some 

energy is transferred into vertical potential energy of the vehicle as it climbs up the 

barrier. Some energy is transferred into the elastic and plastic deformation of the vehicle 

suspension and fender. An unrestrained temporary concrete barrier system is shown in 

Figure 13a.  

Compared to segmented, free-standing concrete barriers, permanent concrete 

barrier systems (such as continuous barriers or systems with the base of the barrier buried 

into the ground) absorb a small amount of the lateral energy during the impact sequence. 

Energy absorbed by the concrete barrier occurs in the form of compression and 

deformation of the concrete. Elastic and plastic deformation of the vehicle sheet metal 

and suspension components absorb part of the lateral energy. Some energy is transmitted 

into vehicle climb up the barrier and roll, pitch, and yaw motions. A permanent concrete 

barrier is shown in Figure 13b.  

Some temporary concrete barrier systems are restrained from having excessive 

deflections, allowing temporary barriers to be used in places where permanent barriers 

are necessary. These barriers absorb energy in methods similar to a permanent concrete 

barrier system, as well as deformation of pins and loops as well as fracture of the barrier 

near the joints. A restrained-motion temporary barrier is shown in Figure 13c. 
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a) Free-Standing Temporary Concrete Barriers 

 
b) Permanent Concrete Barrier 

 
c) Temporary Concrete Barriers with Restrained Movement 

Figure 13. Types of Concrete Barrier Systems 
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Because of the energy dissipated by friction and the motion of the barriers, 

analysis of a moving free-standing barrier system would be more complicated than the 

analysis of a rigid, fixed barrier system and the restrained-movement barrier system. The 

barrier motion associated with free-standing barriers is difficult to reproduce between 

tests, complicating test comparisons. However, many more tests have been performed on 

free-standing temporary barrier systems than permanent, fixed barrier systems. Some of 

the tests conducted using temporary barriers utilized some form of barrier restraints. A 

summary of NCHRP Report No. 350 test designation 3-11 full-scale crash tests into 32-

in. (813-mm) tall fixed-barrier and limited-deflection temporary barriers are shown in 

Table 4. It should be noted that several tests were not taken into consideration because 

they were geometrically dissimilar to any barrier shape. MASH tests were not included in 

this count because of the low test count. 

Table 4. 32-in. (813-mm) Concrete Barriers Tested According to NCHRP Report No. 350 

Test Designation 3-11 

 
New 

Jersey 
F-Shape 

California 

Single-Slope 
Vertical 

Texas 

Single-

Slope 

Number of 

fixed-barrier 

tests 

2 1 1 1 2 

Number of 

restrained-

barrier tests 

10 6 2* 1 3 

 

* One of these tests was conducted using a steel barrier attached to a concrete base using 

threaded rods. 

 

From the tests in the database, there were 12 full-scale crash tests conducted on a 

32-in. (813-mm) tall fixed concrete barrier using a 2000P pickup truck, but only six 
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permanent concrete barrier impacts had normal, non-textured front faces. Also, all of the 

tests conducted on the 32-in. (813-mm) tall, 9.1-degree single-slope barrier were either 

aesthetic, textured barriers or a metal barrier. Thus, these tests may not correlate well 

with each other, let alone with standard non-textured barriers, because the higher friction 

between that surface and the vehicle may produce drastically different results. 

Most full-scale crash tests on concrete barriers utilizing the 2000P vehicle have 

been run on the New Jersey barrier system. However, the New Jersey barrier tended to 

show instability when impacted at 25 degrees and 62.1 mph (100 km/h), and the test 

results from the New Jersey barrier were inconsistent. The New Jersey barrier has been 

shown to have a higher rollover rate compared to the F-shape, single-slope barrier, and 

vertical barrier due to the fact that the vehicle fleet and testing methods shifted since the 

barrier was first instituted.  

The F-shape barrier showed fairly consistent impact results, and was chosen to 

model for that reason. As stated earlier, F-shape restricted-motion concrete barrier 

systems were reviewed to ensure a broad sample of tests were used to verify the 

simulation model. Barriers were restricted using drop pins, tie-down straps, or by burying 

the base in the ground.  

3.5.2 Vehicle Climb Up the Barrier 

The post-impact vehicle trajectory was compared for different F-shape barrier 

tests, as shown in Figure 14. The sequential images from the fixed barrier full-scale crash 

test were not included here because of their poor quality [Error! Reference source not 

ound.]. Also, one test was not included in this analysis because the barrier joints failed 
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during the test (which is unrepresentative of the barrier motion during a fixed, permanent 

barrier test).  
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a. Test no. FTB-1 at Parallel [A-4] b. Test no. FTB-1 at Ground Impact [A-4] 

    
c. Test no. KTB-1 at Parallel [23] d. Test no. KTB-1 at Ground Impact [23] 

    
e. Test no FTB-2 at Parallel [A-4] f. Test no. FTB-2 at Ground Impact [A-4] 

    
g. Test no. 405160-3-2a at Parallel [24] h. Test no. 405160-3-2a at Ground Impact [24] 

Figure 14. Post-Impact Trajectories of F-Shape Concrete Barrier Crash Tests 
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a. Contact Marks from Test No. FTB-1 

 

 

b. Contact Marks from Test No. FTB-2 

 

c. Contact Marks from Test No. KTB-1 

Figure 15. Impacting Tire Ride-Up for Different Full-Scale Crash Tests 
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In all of the reviewed tests, the vehicle trajectory was very similar. The impacting 

tire of the vehicle contacted the barrier and proceeded to climb up the barrier. The vehicle 

rolled away from the barrier and pitched upward. Vehicle redirection occurred very soon 

after impact. The rear tires impacted the toe of the barrier and began to climb up the 

barrier as well. The rear tires became airborne and the vehicle pitched downward while 

still rolling away from the barrier. As the vehicle came in contact with the ground again, 

it rolled toward the barrier and pitched upward to reach equilibrium. The similarity of 

vehicle motion between these tests was significant, and showed that test results for the 

32-in. (803-mm) barrier are fairly repeatable. 

All of the full-scale tests showed significant tire climb on the upper sloped face of 

the barrier, with several of the tires climbing the entire barrier face. The impacting tire 

ride-up on the barrier for several tests is shown in Figure 15. As the tire climbed the 

barrier, tire scrubbing occurred, and the rim scraped along the barrier as well. This caused 

gouging and contact marks to be present along the front face of the barrier for much of 

the length of contact. 

Comparing the fixed, permanent barrier test to the limited-deflection temporary 

barrier tests provided some interesting insight. Compared to the permanent concrete 

barrier system, the four limited-deflection temporary barrier tests experienced much 

higher roll and pitch angular deflections during the impact, and showed much lower roll 

and pitch angular deflections. In the limited-deflection temporary barrier system, the 

impacting tire climbed higher on the barrier, and the vertical deflection of the center of 

gravity of the vehicle was larger. 
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4 SIMPLIFIED VEHICLE MODEL 

After reviewing several crash tests, it was noticed that there were many 

similarities in vehicle trajectories between tests conducted on similar barrier shapes. 

Analysis on the forces and moments acting on the vehicle allows for comparison between 

simulation results and full-scale results, as well as qualitatively assess forces. 

4.1 Simplified Model Setup 

For most permanent or restrained-motion barrier systems, the forces acting on the 

side of the vehicle largely occur at six locations – the front impacting corner, the rear 

impacting corner, and through the four tires. In hopes of better analyzing the system and 

making recommendations to improve the vehicle impact performance, a simplified model 

of the vehicle was developed, as shown in Figures 16 and 17. The simplified model uses 

gross motion analysis of the vehicle, which is represented as a rectangular prism acting in 

three dimensions. Forces act at the corners of the prism, representing the unbalanced 

forces acting on the vehicle fender and bumper and the tire. The model was developed 

based on an impact with a sloped barrier (F-shape, New Jersey, or single-slope barrier). 

 
Figure 16. Unbalanced Forces During the Initial Impact Stage 

Vertical Force from Friction! 

Lateral Force from Redirection ~ 

Longitudinal Force from Friction ~ 
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Figure 17. Unbalanced Forces During the Tailslap Stage 

4.2 Simplified Model Stages 

The interaction between the vehicle and the barrier occurs in many different 

stages, with different forces being applied and removed. For this analysis, a sloped 

concrete barrier was analyzed, and it was assumed that the vehicle tire rides up the 

barrier, such as what was seen in impacts with the F-shape, New Jersey, Texas 10.8-

degree single-slope, and the California 9.1-degree single-slope barriers.  

4.3 Pre-Contact Stage 

4.3.1 Force List 

Initially, prior to contact, the vehicle is assumed to be traveling straight forward 

without any vehicle rotation. This is the impact condition presented in all current MASH 

testing. A vertical force on the vehicle is applied at each tire location. Because the vehicle 

is tracking and not turning, the frictional force between the vehicle tires and the ground 

was considered to be negligible. In this pre-impact stage, there are no unbalanced forces. 
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Full-scale crash testing with roadside appurtenances has only utilized tracking, 

straight-forward impacts with concrete barriers. While non-tracking impacts have been 

determined to be more severe than tracking impacts [25], there are no MASH or NCHRP 

Report No. 350 full-scale crash test results to review. 

4.4 Impact Stage 

4.4.1 Force List 

The impact forces initiate in different orders depending on the impact angle, 

which has a large effect on the vehicle post-impact trajectory. In this stage, both front 

tires become airborne. An unbalanced vertical force is applied through the impacting tire 

into the sprung mass of the vehicle. As the vehicle strikes the sloped concrete barrier, the 

vehicle body is in direct contact with the barrier, causing a lateral redirecting force 

normal to the barrier face and a longitudinal frictional force acting parallel to the barrier 

surface. As the vehicle climbs the barrier, the contact between the fender and the barrier 

produces a downward force on the front of the vehicle, counteracting the vehicle pitching 

motion. The unbalanced forces acting on the vehicle during the impact stage are shown in 

Figure 16. 

Vertical acceleration of the vehicle was directly related to the unbalanced vertical 

force from the suspension on the vehicle. Excessive vertical accelerations showed large 

vehicle climb up the barrier combined with stiff suspension. The frictional force between 

the barrier and the vehicle tire and fender minimize the vertical suspension force on the 

sprung mass. Lateral acceleration of the vehicle was related to both lateral force on the 

tire and lateral force from redirection. However, a review of full-scale crash testing on 

low-angle impacts showed that the lateral component of the force on the tire does not 
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provide significant lateral force on the vehicle sprung mass. Longitudinal acceleration 

was a combination of the longitudinal frictional force on the vehicle body and on the 

impacting tire.  

Various factors affect each force. Tire-to-barrier friction, barrier material, and 

shock stiffness are each independent factors affecting the suspension force on the vehicle 

sprung mass. Similarly, the frictional force between the vehicle and the barrier is 

dependent on the fender material, barrier material, shape, and surface treatments. To 

theoretically develop these forces would take a significant effort, and the constitutive 

model developed for each force would vary based on the vehicle.  

4.4.2 Moments Caused by Impact Stage Forces 

During the impact stage, the vehicle encounters roll, pitch, and yaw angular 

accelerations. Every reviewed test utilizing 2000P or 2270P trucks showed that the front 

end of the vehicle pitched upward and yawed away from the barrier during this stage. 

Most of the truck impacts caused the vehicle to roll away from the barrier, especially in 

New Jersey barriers.  

Three of the unbalanced forces contribute to the vehicle roll motion. The vehicle 

roll motion is heavily influenced by the vertical force on the vehicle from the suspension, 

which acts about the longitudinal axis and causes the vehicle to roll away from the 

barrier. The higher the tire climbs on the barrier, the larger the vertical force on the 

vehicle body as the suspension compresses more. The lateral redirecting force acting on 

the tire acts about the longitudinal axis of the vehicle to oppose the vehicle roll away 

from the barrier. The downward force due to friction from the vehicle sheet metal and tire 

scrubbing against the barrier causes the vehicle to roll toward the barrier. Depending on 
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the structural design of the front fender of the vehicle, the lateral force on the fender from 

the impact with the barrier may impart a moment towards or away from the barrier.  

Yaw rate is affected by the lateral redirective force applied to the front fender of 

the vehicle. The lateral force applies a moment to the vehicle about the vertical axis to 

cause the vehicle to yaw away from the barrier. Longitudinal frictional forces apply a 

moment about the vertical axis. This moment opposes the vehicle yaw away from the 

barrier. Yaw motion is also resisted by the contact between the non-impacting tires and 

the ground.  

Pitch rate is affected by the vertical suspension force. The moment arm between 

the vehicle center of gravity and the point of application of the suspension force is 

significantly larger than the moment arms to any of the other forces. The suspension 

force acts about the lateral axis of the vehicle to cause the vehicle to pitch upward. 

Longitudinal friction forces between the barrier and the impacting tire and fender do 

cause a moment affecting the vehicle pitch. Friction forces from the tire imparts a 

moment opposing the upward pitch, while the friction forces from the fender may impart 

a moment supporting or opposing the upward pitch, depending on the structural layout of 

the fender. The rear tires apply vertical forces to the vehicle which act about the lateral 

axis of the vehicle to oppose the upward pitch motion. 

4.5 Tailslap Stage 

4.5.1 Force List 

The vertical force transmitted through the impacting tire gradually decreases to 

zero, and the front of the vehicle loses contact with the face of the barrier. At this time, 

the vehicle yaw rate away from the barrier is significant, which causes the rear of the 
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vehicle to impact into the barrier face, which is referred to as the tailslap. During the 

tailslap, the rear tire mounts the sloped barrier surface, compressing the suspension and 

applying a vertical force to the sprung mass. A large lateral force is transmitted through 

the rear fender of the vehicle, and both of the rear tires leave the ground. The vehicle 

exits the barrier airborne. The diagram of the unbalanced forces during the Tailslap stage 

is shown in Figure 17. 

The lateral force in this stage is due to the force normal to the barrier from the 

tailslap of the rear of the vehicle. In tests conducted on an aesthetic version of the 

California 9.1-degree single-slope barrier, the tailslap was very small, and the side of the 

vehicle was in contact with the barrier at the same time as the rear of the vehicle [26]. 

However, during these tests, the barrier face was a high-friction stone surface. The high-

friction surface reduced the vehicle yaw rate, which minimized the tailslap. Thus, for 

most barriers, the tailslap would be expected to be much higher. 

The unbalanced vertical force on the vehicle during the tailslap stage is caused by 

the rear vehicle suspension as the rear tire climbs the barrier. Frictional force between the 

barrier and the rear fender and tire opposed the suspension force. Unbalanced 

longitudinal force was the result of friction between the barrier and the rear tire and 

fender. 

4.5.2 Moments Caused by Tailslap Stage Forces 

The vertical force from the suspension on the vehicle sprung mass acts about the 

longitudinal axis of the vehicle to cause the vehicle to roll away from the barrier. The 

lateral force on the rear fender may cause the vehicle to roll away from the barrier if the 
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fender is located above the center of gravity. Vertical frictional forces between the 

vehicle and the barrier opposed the roll away from the barrier.  

Yaw motion is affected by the lateral tailslap force on the rear fender of the 

vehicle, which acts about the vertical axis to cause the vehicle yaw rate away from the 

barrier to decrease. While uncommon, this force may be enough to cause the front of the 

vehicle to yaw towards the barrier. Often, this force causes the vehicle to exit the barrier 

with little to no yaw rate. Longitudinal frictional forces between the vehicle and the 

barrier also assist in decreasing the yaw rate.   

Pitch motion is affected by the vertical force acting through the suspension about 

the lateral axis of the vehicle. This causes the front of the vehicle to pitch downward. The 

vertical friction forces between the vehicle and the barrier oppose the downward pitch. 

Longitudinal frictional forces may oppose or support the pitch motion, but the effect of 

these forces on the pitch motion is very small. 

4.6 Airborne Stage 

The vehicle exits the barrier airborne, and with only gravity acting on the vehicle, 

and the rotational and translation motion of the vehicle continue as it falls back to the 

ground. 

4.7 Ground Contact Stage 

Depending on the orientation of the vehicle c.g. in relation to the vehicle contact 

point, the vehicle will either roll over or will recover to a stable position. The reaction at 

this stage is dependent on the vehicle motion through the airborne trajectory stage. 

During this stage, only the ground imparts a force on the vehicle through either the 
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vehicle tires or through the side of the vehicle, if rollover has occurred, and the vehicle 

comes to rest. 
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5 SIMULATIONS OF THE 2270P SILVERADO INTO THE 10.8-DEGREE 

SINGLE-SLOPE BARRIER 

5.1 Introduction 

When developing simulations, it is best to verify simulation data by comparing it 

to full-scale crash testing results because it allows for model improvements to be 

implemented in order to create a more realistic, more accurate model. This includes 

parameter analysis to determine whether varying parameters increases the accuracy of the 

model. Full-scale crash testing has not been conducted on the 9.1-degree single-slope 

barrier, but full-scale crash tests have been conducted on the 10.8-degree single-slope 

barrier. 

5.2 Section Objective 

A 2270P Silverado was modeled impacting a Texas 10.8-degree concrete barrier 

system according to existing full-scale crash test details. Parameter studies on the friction, 

suspension stiffness, barrier mesh size, and barrier material were conducted to develop a 

baseline model for the ZOI study. 

5.3 Model Development Considerations 

Three considerations needed to be accounted when attempting to develop a model 

of a 2270P vehicle impacting a single-slope concrete barrier system: 

1. At the time of this research, there was no readily-available model of the 

Silverado impacting a concrete barrier system. Thus, the contact 

definitions, barrier material model, barrier mesh density, and the timestep 

had to be optimized to improve the simulation. 
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2. No tests had been conducted on the California single-slope barrier 

according to MASH, and only one test was conducted on the Texas 10.8-

degree single-slope barrier [6]. In test no. 420020-3, a 2005 Dodge Ram 

Quad Cab pickup truck impacted a 36-in. (914-mm) tall permanent Texas 

9.1-degree single-slope concrete barrier on a pan-formed deck. Without 

having been tested with a Silverado, there is no guarantee that the model 

would compare to the results of this test. 

3. Only one test has been performed utilizing the Silverado. Test no. 476460-

1-4 utilized a 2007 Silverado impacting a 32-in. (813-mm) tall New Jersey 

concrete barrier system [27]. Without having been tested against a single-

slope barrier, there is no comparison for how the Silverado behaves during 

impact with the barrier. 

With limited data available for the full-scale Silverado impact, it was decided that 

the simulation would be conducted using the barrier and impact conditions according to 

test no. 420020-3, which was conducted on a Texas 10.8-degree single-slope barrier. The 

simulation results for the 10.8-degree single-slope barrier would not be identical to 

impact results for the 9.1-degree single-slope barrier, although the vehicle-barrier 

interaction would be similar. 

5.4 Test No. 420020-3 Details 

The concrete barrier constructed for test no. 420020-3 consisted of a 36-in. (914-

mm) tall, permanent, single-slope half-section bridge rail, as shown in Figure 18. In the 

full-scale test, the barrier was impacted by a 5,036-lb (2,284-kg) 2005 Dodge Ram 1500 

pickup truck [6]. The impacting tire climbed the barrier immediately, and the vehicle 
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began to pitch upward. Despite the tire climb on the barrier, the vehicle rolled toward the 

barrier as the vehicle became airborne. The vehicle continued to roll toward the barrier 

until it contacted the ground. Sequential photographs from the full-scale crash test are 

shown in Figure 19. 

 
Figure 18. Texas 10.8-Degree Single-Slope Bridge Rail [6]
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 0.526 sec  0.615 sec 

Figure 19. Sequential Events from TTI Test No. 420020-3 [6] 
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Following the full-scale crash test, some minor damage was noted on the barrier, 

including scraping and gouging. As for the vehicle, the front and rear impacting wheels 

were disengaged from the vehicle. Damage occurred to both the upper and lower ball 

joints. The windshield sustained minor cracking, and there was damage to the fender, 

bumper, and vehicle side panels. 

5.5 Mesh Size 

The barrier model was developed based on material, section, and mass 

characteristics of previous concrete barrier simulations [15]. The barrier dimensions were 

taken from the full-scale test barrier.  

In finite-element simulations, the mesh size often affects the forces between 

objects, which can be shown by simple simulations of differently-meshed objects. 

Smaller meshes tend to produce softer impacts with lower peak forces. Because of the 

mesh density’s effect on the transmitted forces, the mesh density needed to be determined 

through testing. Three things were considered during these tests – the maximum ZOI, the 

amount of time required to run the simulation, and the comparison of the test data to the 

actual test. 

The barrier was meshed using 1.57-in. (40-mm), 0.79-in. (20-mm), and 0.39-in. 

(10-mm) mesh squares. The barrier was modeled using rigid shell elements. The barrier 

meshes are shown in Figure 20. The simulations were each run for at least 200 ms, 

capturing the maximum protrusions.  
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Figure 20. Barrier Mesh Sizes 

Working width values for the various barrier mesh sizes are shown in Table 5. 

The working width point for all three simulations was the front corner of the left-front 

fender located above the headlight assembly. In each simulation, this corner detached 

from the vehicle and extended behind the barrier. The effect was not as significant with 

the 0.39-in. (10-mm) barrier mesh size, which had the lowest working width value 

because the fender corner did not extend as far behind the barrier.  

Table 5. Working Widths for Various Barrier Mesh Sizes of a 10.8-degree Single-Slope 

Barrier According to MASH Test Designation 3-11 

Mesh Size 

in. [mm] 

Working Width 

in. [mm] 

Zone of Intrusion 

in. [mm] 

1.57 [40] 13.5 [343] 6.5 [165] 

0.79 [20] 14.7 [374] 7.7 [196] 

0.39 [10] 12.8 [325] 5.8 [147] 
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Tire and vehicle body impact forces were measured and plotted for the simulation 

runs, as shown in Figure 21. The smallest mesh produced the softest impact with the 

lowest peak force values. The largest mesh showed the highest peak lateral forces as the 

vehicle impacted the barrier. There was a significant difference in the impact forces 

exerted by the 0.79-in. (20-mm) and 1.57-in. (40-mm) mesh sizes, while the medium and 

small mesh sizes had similar force values  

 

 
Figure 21. Tire and Vehicle Body Impacting Forces for Varying Barrier Mesh Sizes 
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Vehicle vertical climb and roll angles for each barrier mesh size are shown in 

Figure 22. The larger barrier mesh produced the lowest vehicle climb. However, the 

larger barrier mesh produced the largest peak roll angle values, although the roll angle 

decreased to zero after these initial peaks, and the vehicle began to roll away from 

impact. All of these factors are results of the stiffer impact resulting from the larger mesh. 

The 0.79-in. (20-mm) and 0.39-in. (10-mm) mesh sizes produced similar results, although 

the smaller mesh showed higher vehicle roll at the end of the simulation. 

 

 
Figure 22. Vehicle Climb and Roll Angle for Varying Barrier Mesh Sizes 

200 
Vehicle Vertical Deflection Comparison 

Mesh Size 

_A_40mm 
~20mm 

150,+ ------+-----------l-------+------+ ---~ - =-+------1 _C_10mm 

0--t---"-- ~ = =!IJ~==~ 4'=------t-----+ -----+-------j 

-50-+----~------,f---~----+---~---+---~----+----+----+----f-~ 
0 50 100 150 200 250 

Time(ms) 

0_5,~v_e_h_ic_le_R_o_ll_A_n~g~le_c_o_m~p_a_r_is_o_n ___ ~ -------~ ------~ -------~ ----~ 
Mesh Size 

_A_40mm 
o,+ -1L..~ J;...~ =9''="'=== =-,,----+------+ -------l---='"""'F'.:...._+--------1 _s_ 2omm 

_C_10mm 

-2.5-+----~------,f---~----+---~---+---~----+----+----+----f-~ 
50 1 0 1 0 2 0 2 0 

Time(ms) 



 

 

 

55 

 

The difference between the 0.79-in. (20-mm) and 0.39-in. (10-mm) mesh size 

simulation results was relatively small. However, the smaller mesh size came at a 

computing cost. To compare computational costs, 200 ms of simulation were run using 

16 processors, and the results are shown in Table 6. The 1.57-in. (40-mm) and 0.79-in. 

(20-mm) barrier meshes showed nearly identical simulation times, while the 0.39-in. (10-

mm) barrier mesh showed a 23.5% increase in computation time. Based on the 

computation cost and the ZOI values, the 0.79-in. (20-mm) barrier mesh size was used 

for all further simulation models. 

Table 6. Computational Costs for Varying Barrier Mesh Sizes 

Barrier Mesh Size 

in. (mm) 

Time to Simulate 200 ms 

(hours minutes seconds) 

1.57 [40] 11h 28m 57s 

0.79 [20] 11h 6m 10s 

0.39 [10] 14h 30m 23s 

 

5.6 Comparison to Full-Scale Test Results 

Sequential images from the small-mesh baseline simulation with the 2270P 

pickup truck impacting the Texas single-slope concrete median barrier are shown in 

Figure 23. The overall vehicle crush, impacting tire motion, and vehicle trajectory were 

very consistent with the full-scale test results, shown in Figure 19. 
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Figure 23. Sequential Images for Baseline Texas Single-Slope Barrier
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Several differences were noted between the full-scale test and the simulation. The 

biggest difference was the height of the tire climb on the barrier. Using the photographs 

from the report, it was estimated that the height of the tire climb in the full-scale crash 

test was 9 in. (229 mm), while the height of the tire climb in the simulation was 13 in. 

(331 mm). Similar to what was discovered with the C2500 model, the disparity between 

the two values could be caused by the suspension stiffness. As the vehicle rolls toward 

the barrier after impact, the impacting tire climbs the barrier and rolls up the front face. 

The tire vertical motion is restricted by two forces: (1) the friction force between the tire 

and the barrier as the tire is scrubbed against the barrier, and (2) the suspension force 

transmitted to the vehicle. 

From the full-scale test, the zone of intrusion was measured as 10 in. (254 mm), 

while in the simulation the zone of intrusion was measured to be 9.5 in. (241.3 mm). 

5.7 Parameter Studies 

Several parameter studies were conducted using a 2270P vehicle model. For these 

parameter studies, the interaction between the vehicle and the barrier was analyzed. 

Several parameters are pertinent to the impact performance: (1) the friction between the 

vehicle sheet metal and the barrier; (2) the friction between the vehicle tire and the 

barrier; (3) the stiffness of the suspension; (4) quarter panel crush stiffness; (5) the joint 

strengths and failure times; and (6) the vehicle dimensions, mass properties, and inertias. 

Many of these parameters were determined from physical testing and material 

specifications given for the modeled vehicle parts.  

The vehicle mass and inertial properties of the 2270P Silverado model matched an 

actual Silverado pickup truck fairly well [28]. The quarter panel crush stiffness is the 
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product of several components and constraints, and is very complicated to review as a 

whole, and thus was not investigated as a part of this project. 

It was decided that the suspension stiffness, the joint failure strengths and times, 

the tire-to-barrier friction coefficient, and the sheetmetal-to-barrier friction coefficient 

would be investigated. Also, several parameters specific to finite-element analysis were 

investigated, including the material definition type and the joint failure methods. 

5.8 Tire-to-Barrier Friction Coefficient 

From previous simulations using the C2500 vehicle model, the coefficient of 

friction between the barrier and the vehicle sheet metal, tire sidewalls, and tire tread was 

varied between 0.05, 0.3, and 0.6. Results from real-world friction studies have shown 

that the coefficient of friction between the vehicle tire and the barrier was significantly 

higher. However, in finite element modeling, accurate friction values are extremely mesh 

dependent and almost always lower than actual values in order to achieve desired results 

[29]. Thus, the friction coefficient had to be evaluated for its effect on the vehicle impact 

performance to better understand the interaction between the vehicle and the barrier. 

The tire-to-barrier coefficient of friction is affected by many factors. Formation 

factors such as concrete composition and concrete casting method may greatly affect the 

coefficient of friction. Also, environmental factors such as ice and rain may affect the 

friction as well. 

The small-mesh barrier was used to construct the next set of simulations. The 

coefficient of friction between the tire and the barrier was varied between 0.15 and 0.45. 

Vehicle positions at the maximum ZOI during the impact and tailslap phases were 
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reviewed, and the vehicle positions from the models using coefficients of friction (COFs) 

of 0.15 and 0.45 are shown in Figure 24. 

     
COF = 0.15 

 

     
COF = 0.45 

 

Figure 24. Maximum ZOI Positions for Low and High Tire-to-Barrier COFs 

For these simulations, impact with the barrier occurred at approximately 60 ms, 

the rear of the vehicle impacted the barrier at approximately 240 ms, and the vehicle 

exited the barrier at approximately 330 ms. The impacting tire contacted the ground again 

at 450 ms. 

5.8.1 Vehicle Vertical Displacement 

The vehicle vertical displacement is shown in Figure 25. The vertical 

displacement here is due to the tire climbing up the barrier. Two factors affect how high 

the vehicle is vertically displaced: (1) the suspension stiffness, and (2) the height of the 

tire climb. Since the suspension stiffness is independent of the friction between the tire 
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and the barrier, the tire climb is the major factor contributing to the disparity in the 

vertical displacement of the vehicle. 

 
Figure 25. Vehicle Vertical Displacement 

From Figure 25, the test run that had the highest vehicle vertical displacement was 

the run that had the lowest coefficient of friction. The highest coefficient of friction 

resulted in the lowest vehicle vertical climb. This indicates that the friction between the 

tire and the barrier resists vertical motion; likely, the vertical force occurred because the 

vehicle crushes the tire between the lower control arm and the barrier, then the tire is slid 

up the barrier. This produces the black tire marks that are commonly seen on the front 

faces of barriers. This also implies that the natural ride-up of the tire rolling up onto the 

barrier is not as significant as the tire being crushed against the barrier. 
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5.8.2 Roll Angle 

The roll angles for the different runs were measured and are shown in Figure 26. 

The roll angle is initially affected by two different factors: (1) the lateral redirecting force 

exerted on the tire by the barrier and (2) the vertical force exerted by the suspension. The 

deformed tire from the Silverado impact is shown in Figure 27. Assuming that these 

results are realistic, the simulations imply that decreased barrier friction causes an 

increased roll risk.  

 
Figure 26. Vehicle Roll Angle for Varying Tire-to-Barrier Friction Coefficients 
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Figure 27. Deformed Silverado Tire 

5.8.3 Pitch Angle and Analysis 

The forces contributing to the pitch angle of the vehicle immediately after impact 

are the vertical forces acting upward on the suspension and the vertical friction forces 

acting downward on the tire as the vehicle climbs the barrier and the tire is scrubbed 

against the barrier. The roll, pitch, and yaw angles were measured using the local 

coordinate axes set established in the Silverado model at the vehicle c.g. The pitch angles 

as measured from the local coordinate axes are compared in Figure 28.  
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Figure 28. Vehicle Pitch Angle Measured from Local Coordinate Axes 

The pitch angle data misrepresents what occurs during the simulation. If the pitch 

angles in Figure 28 were correct, the vehicle would have pitched upward on impact with 

the barrier and continued to pitch upward after impact. The simulation data, however, did 

not show this to be true. For example, at 350 ms, the vehicle pitch angle was 

approximately zero, and the vehicle was pitching downward, as shown in Figure 29. 

Similarly, at 540 ms, the vehicle was pitched downward. Thus, the pitch angular data 

from the local coordinate system at the center of gravity of the vehicle was deemed 

unusable. 
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Pitch Angle at 350 ms 

 

 
Pitch Angle at 540 ms 

 

Figure 29. Simulated Vehicle Pitch Angle 

In order to obtain a more meaningful pitch angle, two points were measured on 

the vehicle. The longitudinal separation and vertical height differences were used to 

calculate the pitch angle of the vehicle. In order to obtain an accurate pitch-only 

measurement, the two points were at roughly the same height (or else pure roll motion 

slightly changes the difference in height), the points were not taken from parts that 

deform or move relative to each other. Both points were positioned on the longitudinal 

centerline of the vehicle. Several different points along the vehicle’s length were chosen 

and reviewed as potential pitch measurement points, but it was very difficult to locate a 

point that matched the three requirements. 

In the center of the bed of the pickup truck, a large square panel was positioned 

for mounting instruments. This was modeled in the simulated vehicle. The panel 
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dimensions were 23.6 in. by 23.6 in. (600 mm by 600 mm). The pitch motion was 

measured using two nodes from this panel along the longitudinal axis of the vehicle, and 

the result was plotted in Figure 30. It was noted that this pitch angle closely resembled 

the actual pitch angle from visual inspection of the vehicle during the simulation.  

 

 
 

Figure 30. Vehicle Pitch Angle Measured from Instrument Mounting Panel  
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plate would be similar to the motion of the actual center of gravity.  

Based on the simplified vehicle model in Chapter 4, the vehicle was expected to 

pitch upward as the front wheel impacted the barrier and began to ride up it. As the 

vehicle mounted the barrier and as the lateral redirecting force on the vehicle front end 
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reduced to zero, the vehicle would pitch downward as the rear tires apply a negative 

moment about the pitch axis. The rear tires contact the barrier and ride up it, further 

increasing the negative moment about the pitch axis. As the vehicle leaves the barrier, it 

becomes airborne, and the pitch angle rate became constant. While the vehicle is 

airborne, it continues to pitch downward. Finally, the vehicle contacted the ground, and 

the vehicle pitch angle returned to zero. This behavior was imitated by the pitch angles 

shown in Figure 30.  

The simulations incorporating the lowest coefficients of friction between the tire 

and the barrier had the highest initial and final peak pitch angles. However, the 

simulations with the higher pitch angles had a higher secondary peak angle. The initial 

peak pitch angle occurred as the vehicle climbed the barrier. During the tailslap phase, 

the vehicle pitched downward, and during the airborne stage, the pitch rate remained 

constant. 

5.8.4 Yaw Angle 

Yaw angle is initially affected by two forces: (1) the lateral redirecting force on 

the vehicle and tire from the barrier, and (2) the longitudinal friction force exerted on the 

tire and vehicle from the barrier. The longitudinal friction force is directly correlated to 

the lateral redirecting force, although the friction force is smaller than the lateral force 

(because the coefficient of friction is less than unity). Also, the geometry of the vehicle 

gives the lateral redirecting force a much larger moment arm than the longitudinal 

friction force. Thus, the yaw moment caused by the lateral redirecting force is 

significantly larger than the yaw moment caused by the longitudinal friction force. 
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The yaw angles are compared in Figure 31 for the varying tire-to-barrier 

coefficients of friction. The results for each of these runs were very similar, with a near-

identical final resting value. However, the yaw rate was slightly less for the simulations 

with the higher coefficient of friction.  

 
Figure 31. Vehicle Yaw Angle for Varying Tire-to-Barrier Friction Coefficients 

5.8.5 Angular Comparison Between Test and Simulation 

Angular data from the full-scale crash test are shown in Figure 32. It should be 

noted that the vehicle roll angle in the full-scale test was opposite the roll angle for the 

simulations because the full-scale vehicle impacted the barrier with its right side, and the 

simulated vehicle impacted the barrier with its left side. In the full-scale test, the vehicle 

initially rolled away from the barrier, whereas in the simulation, the vehicle did not roll 

away from the barrier at all. Reviewing the forces that affect the vehicle roll motion, 
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either the lateral force transmitted through the wheel assembly was too large or the 

upward suspension force was too small.  

 
Figure 32. Angular Data from Test No. 420020-3 [6] 

Vehicle pitch angle was not as large in the simulation as it was in the full-scale 

test. Some of this error may be due to how the pitch angle was measured in the 

simulation. However, based on the results of the roll angle and the tire climb 

comparisons, the suspension stiffness appeared to be too weak. Thus, some of the 

difference in the pitch angle could also be attributed to the weak suspension stiffness. 

5.8.6 ZOI Results for Tire Friction Simulations 

Zone of intrusion is defined as the distance behind the top front corner of the 

barrier that the vehicle protrudes. The ZOI was defined to prevent harm to the occupants 

if the vehicle were to contact objects or hazards behind the front face of the barrier. The 

(/) 
Q) 

~ 
Cl 
Q) 

"C 

(/) 
Q) 

c, 
C: 

<( 

Roll, Pitch, and Yaw Angles 
40~-----~------~-----~------~-----~-----~ 

' ' 20 --- --- --- --- -- --~------- --- --- ---~- - -------
' ' 

or---.:t--::----==:::::::i=r-----------:--~---===--:::-===-==--=-=~-:=--------.;;::::::-:_-:::_-:=_-::_-=_-=_-=.-=.-=.-=-----==:::::1 
I 
I 

' ' ' ' -20 ------------- --r----------------r---------------,--------------

-40 - -

-60 --

~o --

Test Number: 420020-3 
Test Standard Test No.: l'v\A.SH 3-11 
Test Date: 2010-08-03 
Test Article: TxDOT SSTR Retrofit Pan-Formed Bridge Rail 
Test Vehicl e: 2005 Dodge Ram 1500 Q..Jad-Cab 
Inertial l'vass: 5036 lb 
Gross l'vass: 5036 lb 
Impact Speed: 63.8 mi/h 
Impact Angle: 24.8 degrees 

0.2 0.4 0.6 

Time (s) 

I- Roll - Pitch -- Yaw I 

' ' 
' I - - - - - - - - I - - - - - - - - - - - - - - - - , - - - - - - - - - - - - - - - -

0.8 1.0 

Al.es are vehide-fixed. 
Sequence fOf detennining 
orientation: I .;.:,. J;8 . .-~ 

1 Yaw. -~ 
2: Pltch. _,.,.,-~ ~~~~ 
3 Roll t 

.-1 I~'~"'' 

1.2 



 

 

 

69 

 

ZOI is measured from a point on the vehicle to the top front corner of the barrier as the 

vehicle protrudes over the barrier. The overall ZOI is assumed to be the point with the 

farthest protrusion. This excludes vehicle components that are detached from the vehicle. 

However, not all vehicle components protruding beyond the barrier may cause 

harm to the occupant. Unfortunately, little research has been performed to determine 

which components are critical and which are not. Thus, several important ZOI values 

were determined and are shown in Table 7. The ZOI was calculated from four points: the 

front corner of the front fender (which always protruded the farthest), the front corner of 

the hood, the rear corner of the vehicle, and the edge of the rear door. These points 

protruded the farthest behind the barrier after impact. 
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Table 7. ZOI of Varying Tire Coefficients for the 10.8-degree Single-Slope Barrier 

Tire-To-Barrier 

COF 

Zone of Intrusion – in. [mm] 

Front Fender 
Corner of 

Hood 

Rear Corner of 

Box 

Edge of 

Door 

0.15 11.4 [289] 8.4 [214] 7.7 [195] 5.5 [141] 

0.2 9.9 [251] 8.5 [217] 7.9 [199] 4.9 [124] 

0.25 9.9 [252] 8.5 [215] 7.8 [199] 4.1 [103] 

0.3 10.1 [258] 8.4 [214] 7.7 [196] 3.4 [87] 

0.35 9.8 [248] 8.5 [217] 7.5 [190] 3.0 [75] 

0.40 9.5 [242] 8.4 [213] 6.7 [171] 2.8 [70] 

0.45 9.7 [247] 8.4 [214] 6.7 [170] 2.5 [63] 

 

The left fender point protruded the farthest behind the barrier in each simulation. 

After impact, the front corner of the left fender pulled away from the vehicle, as shown in 

Figure 33. The hood protruded beyond the barrier as well, but it was on average 1.6 in. 

(40 mm) less than the fender.  

 
Figure 33. Fender Protrusion Over the Barrier (Note: Fender is orange for distinction) 
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An impact between the front fender and a hazard behind the barrier may not pose 

a risk to the occupant. During the initial ZOI study, the fender impacted the rigid pole 

during the test, which did not pose a significant risk to the occupants, as shown in Figure 

34. Longitudinal loads on the fender caused the fender to crush without imparting 

significant accelerations to the occupant compartment [11]. Thus, if a point on the fender 

was used to determine the maximum ZOI, it may be too conservative of an estimate of 

the actual ZOI. The ZOI of the front fender was included in Table 7 for reference. Note 

that this test did not utilize a dummy occupant and did not take head ejection criteria into 

consideration. 

 
 

Figure 34. Fender Impact with a Rigid Pole [11] 

The hood of the 2000P vehicle has shown some propensity to be propelled into 

the windshield of the vehicle, posing a risk to the occupants [10]. Thus, a point on the 

hood should be considered when evaluating the ZOI. The corner of the hood may not 

pose a risk to the vehicle occupants, and using the corner as the maximum ZOI point will 

provide a conservative estimate of the true ZOI of the vehicle impacting the barrier. As of 
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this study, there is no research available defining the location of the critical ZOI points on 

the vehicle.  

Door protrusion poses a risk to the occupant for several reasons. First of all, an 

impact between the top of the door and a rigid object behind the barrier could cause 

protrusion into the occupant compartment. Also, depending on the connection between 

the door and the vehicle, an impact with the door could cause excessive accelerations of 

the occupant compartment. Finally, during an impact event, the occupant contacts the 

door and the head of the dummy impacts the window, potentially fracturing the glass and 

extending out of the cab.  

While the head ejection criteria has been developed for 2000P pickups, the head 

ejection has not been studied with the 2270P vehicle, and there may be potential for the 

occupant to contact hazards outside of the vehicle. It should be noted that prior crash tests 

utilizing a test dummy in the Dodge Ram 1500 Quad Cab pickup truck have not shown a 

significant difference in the deflection of the top of the door with and without a dummy 

in the impact-side seat [17,20]. Thus, it is believed that the door protrusion without the 

dummy is an accurate representation of the actual ZOI of the door during an impact. 

However, this does not represent the protrusion of a dummy head out of the window. 

While impacts with the rear of the vehicle would not cause direct penetration into 

the occupant compartment, large forces exerted on the rear of the vehicle could cause 

excessive occupant compartment accelerations or adversely affect the trajectory of the 

vehicle.  



 

 

 

73 

 

5.8.7 Recommended Tire-to-Barrier Friction Coefficient 

Low coefficients of friction tend to increase the zone of intrusion of the barrier 

system while still showing fairly accurate gross vehicle motion during and after the 

impact sequence. The rear corner of the vehicle and the impact-side door showed the 

largest decrease in ZOI as the tire friction increased because it reduced the yaw rate, 

which decreased the magnitude of the tailslap impact. However, the tire-to-barrier 

coefficient of friction did not greatly affect the maximum zone of intrusion.  

Larger coefficients of friction incur larger frictional forces, which tend to cause 

increased propensity for tearing and deformation of the components, increasing the 

computation cost and making the simulation less stable. Thus, it was recommended that 

the tire-to-barrier coefficient of friction be reduced to 0.15. 

5.9 Vehicle Body-to-Barrier Friction Coefficient 

Simulations were performed while varying the coefficient of friction between 

0.05 and 0.40 between the vehicle body and the barrier. This effort was completed while 

maintaining the coefficient of friction at 0.15 between the tire and the barrier. Vehicle 

positions at the maximum ZOI during the impact and tailslap phases were reviewed, and 

the vehicle positions from the models using COF’s of 0.05 and 0.40 are shown in Figure 

24.



 

 

 

74 

 

     
COF = 0.05 

     
COF = 0.40 

Figure 35. Maximum ZOI Positions for Low and High Vehicle-to-Barrier COFs 

5.9.1 Vehicle Vertical Displacements 

A comparison of the vertical vehicle displacements during the simulations is 

shown in Figure 36. Similar to the tire-to-barrier coefficient of friction, the vehicle body-

to-barrier friction coefficient increased the resistance to vertical motion by the vehicle. 

Thus, higher coefficients of friction will reduce the vertical displacement of the vehicle. 

l - -\ ' 
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Figure 36. Vehicle Vertical Displacement 

5.9.2 Roll Angle 

The vehicle roll angles from the simulations are shown in Figure 37. The 

simplified vehicle model predicted that the vertical friction force between the vehicle and 

the barrier would induce a roll angle toward the barrier. This would suggest that higher 

friction coefficients have higher initial roll angles as the vehicle climbs the barrier. 

However, as the vehicle continues to climb the barrier, the roll motion would be resisted 

by the vertical friction force, and the roll angle should then decrease for larger 

coefficients of friction. This behavior was seen in the roll angles, as shown in Figure 37a. 

The simplified vehicle model predicts that the end roll angle should be lowest for higher 

coefficients of friction, which was also witnessed in the simulation results, as shown in 

Figure 37b.  
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a. Overall Vehicle Roll Motion 

 

 
b. Vehicle Roll Motion Prior to Rear Wheel Impact with Barrier 

 

Figure 37. Vehicle Roll Angle 
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5.9.3 Yaw Angle 

The yaw angles for the simulations are shown in Figure 39. The friction force on 

the vehicle from the barrier creates an unbalanced moment about the center of gravity, 

which resists the natural redirection of the vehicle due to the moment created by the 

lateral redirecting force. Thus, higher coefficients of friction should cause the vehicle to 

have lower redirection rates, and the tailslap of the vehicle should occur later in the 

impact sequence.  

 
Figure 38. Vehicle Yaw Angle 

5.9.4 Pitch Angle 

Vehicle pitch angles, as measured from the instrument mounting panel in the bed 

of the pickup truck, are shown in Figure 39. The simplified vehicle model predicted that 

for higher vehicle body-to-barrier coefficients of friction, the pitch motion should be 

damped, just like what was seen in the parameter study involving the tire coefficient of 
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friction. However, this was not seen in the simulation results. Instead, the simulation 

results show that higher coefficients of friction initially reduce the pitch angle of the 

vehicle. As the rear of the vehicle impacted the barrier, the vehicle pitched downward. 

However, the increased coefficient of friction between the vehicle body and the barrier 

did not resist the negative pitch motion, and the higher friction values caused the vehicle 

to have a larger negative pitch than the lower friction values.  

 
Figure 39. Vehicle Pitch Angle 

5.9.5 Contact Force Analysis 

The SAE 60 filter was applied to the contact forces between the vehicle body and 

the barrier, and the results were plotted, as shown in Figure 40. The orientations of the 

contact forces is shown in Figure 41. The contact forces showed two distinct peaks 

occurring in the impact and tailslap phases.  
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Figure 40. Contact Forces Between the Vehicle Body and Barrier 
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Figure 41. Contact Forces Orientations 

Tailslap into the barrier occurred later for the simulation with a higher coefficient 

of friction. However, the vertical forces acting on the vehicle were significantly lower for 

the higher coefficient of friction. During the impact phase, the vehicle vertical motion 

was relatively small, so the vertical resisting force was also small. Also, the highest 

coefficient of friction experienced the lowest pitch angle, which contributed to the lower 

vertical force. For the rear impact into the barrier, the lateral redirecting force was lower 

for the higher coefficient of friction. As the vehicle redirected, the vehicle with the lower 

coefficient of friction redirected at a more rapid pace. The sharp rear impact into the 

barrier counteracted this rapid redirection and caused the vehicle to exit the barrier. For 

the higher coefficient of friction, the lower redirection rate did not require as large of a 
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lateral force on the rear of the vehicle to cease the vehicle yaw motion, which 

consequently caused lower friction forces. 

5.9.6 ZOI Results for Vehicle Friction Simulations 

The working width was determined for each simulation and is shown in Table 8. 

The working width peaked at a coefficient of friction of 0.10. The working width 

decreased at very low coefficients of friction. This occurred because the vertical frictional 

force acting on the front fender prevented the fender from sliding up the barrier at the 

time of maximum zone of intrusion. For lower friction coefficients, the vehicle would 

merely climb up the barrier and not have as much vehicle crush at that location. For 

higher friction coefficients, the vehicle’s front end experienced significant lateral drag as 

it slid along the barrier. This caused deformation of the front fender, which was the point 

where the ZOI was measured. 
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Table 8. Zone of Intrusion – Varied Vehicle Body-to-Barrier COF 

Vehicle-to-Barrier 

COF 

Zone of Intrusion – in. [mm] 

Front Fender 
Corner of 

Hood 

Rear Corner of 

Box 

Edge of 

Door 

0.05 10.7 [271] 7.8 [199] 8.4 [212] 8.1 [207] 

0.10 11.2 [285] 8.2 [207] 7.9 [199] 6.9 [175] 

0.15 10.9 [277] 8.3 [212] 7.8 [198] 6.5 [164] 

0.20 10.3 [261] 8.6 [219] 7.7 [195] 5.6 [142] 

0.30 10.9 [277] 8.7 [221] 7.5 [191] 4.6 [116] 

0.40 10.5 [267] 8.9 [226] 8.2 [209] 3.1 [80] 

 

5.9.7 Recommended Vehicle-to-Barrier Friction Coefficient 

With the exception of the pitch angle, vehicle behavior was most severe at lower 

vehicle-to-barrier coefficients of friction. Higher coefficients of friction softened the 

tailslap phase impact between the vehicle and the barrier, and the net yawing moment 

about the center of gravity was less due to the longitudinal friction force on the front 

fender.  

The largest protrusion over the barrier from the front fender occurred at a friction 

coefficient of 0.10, but, as stated in Section 5.8.7, a longitudinal impact between the 

fender and a rigid hazard may not pose a risk to the vehicle’s occupants. Hence, the 

critical vehicle-to-barrier friction coefficient was chosen based on the other three ZOI 

points. 

As the friction coefficient increased, the hood protrusion behind the barrier 

increased. This occurred because the increased friction created a yaw moment towards 

the concrete barrier. With an increase in the friction coefficient, the rear corner of the 
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vehicle and the corner of the door did not protrude as far behind the barrier. Also, at 

higher friction values, the model showed greater instability. Thus, a lower friction value 

was desired for stability. At all coefficients of friction larger than 0.05, the maximum 

ZOI point occurred at the corner of the hood. The difference between the maximum ZOI 

point at friction values of 0.10 and 0.40 was 0.7 in. (19 mm). Based on the model stability 

and the severity of the ZOI values at each point, it was decided that the coefficient of 

friction for the vehicle body-to-barrier contact should be 0.10.  

5.10 Elastic Barrier Study 

The barrier material can greatly affect the behavior of the system. In most 

simulated permanent concrete barrier systems, the barrier is modeled out of rigid 

material. While the rigid material is a good approximation for the barrier behavior, no 

material is perfectly rigid, and there is some elastic response in the barrier. However, LS-

DYNA contact algorithms do take into account the actual material properties in 

determining reaction forces. Thus, parts defined as rigid behave somewhat elastically 

when impacted. 

Modeling the barrier as an elastic, deformable material is more computationally 

expensive. To determine the benefit of an elastic barrier, the barrier was modeled as an 

elastic material and compared to the behavior of the model using the rigid material 

definition.  

The barrier was split into three sections – a 26.9-ft (8.2-m) long elastic section for 

the length of contact with the vehicle and two rigid barrier portions for the ends of the 

barrier serving as anchorage for the elastic barrier and for visual effect. The elastic barrier 
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was modeled as shell elements having a density of 8,300 lb/ft
3
 (60,000 kg/m

3
), a 

Poisson’s ratio of 0.28, and a stiffness of 2,900 kpsi (20 GPa).  

For the first simulation, the barrier was constrained along the upstream and 

downstream ends of the 26.9-ft (8.2-m) long elastic barrier section. The bottom edge of 

the barrier was free to move laterally. The first simulation utilizing the elastic barrier 

encountered unrealistic barrier deformations. The base of the barrier deformed 2.6 in. (65 

mm) laterally inward, and the center of the barrier deformed 1.6 in. (40 mm) laterally 

inward.  

The lateral movement of the base of the barrier diverged from the physical testing 

results significantly. Permanent concrete barriers are often cast into the ground, and the 

base of the barrier deflection is negligible. Thus, the base of the barrier was fixed to 

prevent movement, and the simulation was performed again. The barrier had the same 

properties as before, and the maximum deformation seen in the barrier was measured as 

1.1 in. (28 mm) at a height of 22.2 in. (563 mm). While this represented a marked 

improvement in the barrier motion, the deflection of the barrier was still unreasonable. 

To determine the effect of barrier stiffness on the vehicle motion and the ZOI, the 

barrier stiffness was altered. In the previous simulations, the barrier stiffness was 2,901 

kpsi (20 GPa). The barrier stiffness was changed to 5,802 kpsi (40 GPa) and 1,450 kpsi 

(10 GPa), which resulted in maximum barrier deformations of 0.68 in. (17 mm) and 1.7 

in. (43 mm), respectively. A summary of the barrier deformation for each condition 

simulated is given in Table 9. The ZOI measured for each test is also shown in Table 9. 
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Table 9. Elastic Barrier Study Summary 

Restrained / 

Unrestrained 

Barrier Base 

Barrier 

Stiffness 

kpsi (GPa) 

Max Barrier 

Deformation 

in. (mm) 

ZOI – in. (mm) 

Front 

Fender 
Hood 

Rear 

Corner of 

Box 

Door 

Unrestrained 2,901 (20) 2.6 (65) 
11.5 

(292) 
8.6 (218) 9.0 (229) 6.5 (166) 

Restrained 2,901 (20) 1.1 (28) 
11.7 

(296) 
8.6 (219) 7.9 (201) 6.0 (153) 

Restrained 5,802 (40) 0.68 (17) 
11.2 

(284) 
8.3 (210) 7.1 (180) 6.0 (152) 

Restrained 1,450 (10) 1.7 (43) 
12.3 

(313) 
8.9 (226) 8.3 (210) 5.7 (144) 

 

Barrier deformation at the impact location varied for each simulation. As noted 

previously, the differing barrier profile at the impact location may affect the post-impact 

trajectory of the vehicle. The barrier shape at impact was found by taking a cross-section 

of the barrier at impact and showing the initial and final deformed states, as shown in 

Figure 42. The deformed barrier shapes for each of the elastic barrier simulations are 

shown in Figure 43. 

 
Figure 42. Elastic Barrier Deformation during Impact 



 

 

 

86 

 

    
Unrestrained Barrier Base    Restrained Barrier Base 

20 GPa Barrier Stiffness    20 GPa Barrier Stiffness 

 

 

     
Restrained Barrier Base    Restrained Barrier Base 

40 GPa Barrier Stiffness    10 GPa Barrier Stiffness 

 

Figure 43. Deformed Barrier Shapes for Each Elastic Barrier Simulation 



 

 

 

87 

 

The internal energy of the barrier was reviewed to determine how much energy 

was absorbed by the barrier during the impact. The pre-impact lateral kinetic energy (or 

impact severity) of the vehicle prior to impact is given by  

                 
 

 
           

 

where m is the mass of the vehicle, V is the velocity of the vehicle, and θ is the impact 

angle. For the simulated impact, the impact severity was 273.0 kip-ft (370.1 kJ). In 

comparison, the peak energy absorbed by the elastic barrier was nearly 50 times less than 

this. Energy absorbed by the concrete barrier is shown in Figure 44. Thus, the vehicle’s 

angular motions, vertical deflection, and deformations account for at least 98% of the 

lateral energy transfer.  

 
Figure 44. Energy Absorbed by the Elastic Barrier 

Vehicle trajectories for the elastic barrier simulations were compared to the rigid 

barrier. The vehicle roll angle and c.g. height are plotted through 200 ms in Figures 45 
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throughout the impact phase. The unrestrained elastic barrier showed the largest roll 

angle, while the restrained elastic barrier simulations showed the lowest roll angle. As for 

the vertical deflection, as the barrier stiffness increases, the maximum vehicle c.g. height 

increased, and the rigid barrier showed the highest c.g. deflection. However, the 

maximum height difference between the stiff elastic, less-stiff, and rigid barrier 

simulations was less than 5%. 

 
 

Figure 45. Vehicle Roll Angle Comparison for Elastic Barrier Impacts 
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Figure 46. Vehicle C.G. Vertical Motion Comparison for Elastic Barrier Impacts 

Simulations with the elastic barrier decreased the computational time. The elastic 

barrier simulations were each calculated with a 200 ms simulation duration on 16 

processors, and the time required to compute these simulations is shown in Table 10. The 
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Table 10. Elastic Barrier Computation Time Comparison 

Simulation Conditions 
Time 

(hours minutes seconds) 

Rigid Barrier 13h 43m 55s 

Unrestrained Elastic Base 10h 1m 8s 

Restrained Elastic Base 10h 56m 43s 

Restrained Elastic Base,  

Stiffer Barrier Material 
10h 33m 41s 

Restrained Elastic Base, 

Less-Stiff Barrier Material 
10h 46m 51s 

 

5.10.1 Conclusions 

Based on the results of the elastic barrier study, the restrained elastic barriers 

showed a higher ZOI, lower roll angles, and lower c.g. height deflections than the rigid 

barrier. While unreasonable deformations were seen in the unrestrained concrete barrier, 

the dynamic compression of the concrete barrier was not evaluated during this study. For 

simplicity’s sake, the barrier was modeled as a rigid barrier, but it is recommended for 

future simulations that the barrier be modeled as an elastic material. 
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6 ZOI SIMULATION MODELS 

The baseline model used to determine the ZOI values is shown in Figure 47. The 

36-, 42-, and 56-in. (914-, 1,067-, and 1,422-mm) tall, single-slope concrete barriers were 

modeled according to standard 14B32 of the Wisconsin Department of Transportation. 

The three different barrier profiles are shown in Figure 48. In the baseline vehicle model, 

the suspension joints did not fail, and the impacting tire did not deflate. 

 

 
Figure 47. Baseline Simulation Model Used to Determine ZOI 

 
Figure 48. Simulated 9.1-degree Barrier Profiles 
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Based on the results of the Texas 10.8-degree single-slope barrier simulations, the 

barrier was chosen to be rigid material with a mesh size of 0.79 in. (20 mm). For contact 

purposes, the elastic modulus was defined as 4.64 Mpsi (32.0 GPa), and the Poisson’s 

ratio was 0.20. Both of these values were consistent with actual concrete. The coefficient 

of friction between the tires and the concrete barrier was 0.15, and the coefficient of 

friction between the vehicle and the barrier was 0.10.  
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7 ZONE OF INTRUSION ANALYSIS 

7.1 Baseline Evaluation 

The ZOI was evaluated initially by impacting the 2270P vehicle model into the 

three barriers shown in Figure 48. No modifications were made to the vehicle suspension 

or tires. Comparisons were made between the three simulations to determine the effect of 

barrier height on the impact performance of the barrier. 

7.1.1 Vehicle C.G. Height 

The vehicle c.g. heights during the simulations were measured and plotted in 

Figure 49. Overall, the vehicle c.g. height was fairly consistent between the 42-in. and 

56-in. (1,067-mm and 1,422-mm) tall barrier impacts. However, the 36-in. (914-mm) tall 

barrier impact caused the vehicle to climb up the barrier over 4 in. (102 mm) more than 

the taller barriers. Forces occur at two distinct periods; the first during the impact phase 

and the second during the tailslap phase. 

 
Figure 49. Baseline 9.1-degree Single-Slope Barrier Simulation C.G. Height Comparison 
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7.1.2 Contact Force Analysis 

Vertical forces between the vehicle and the barrier were filtered with an SAE 60 

filter and plotted for different vehicle components for the 36-in. (914-mm) barrier 

simulation, as shown in Figure 50. The vertical force between the vehicle body and the 

barrier was larger than the vertical force between the barrier and either of the tires.  

 
Figure 50. Contact Forces by Component 

Total vertical forces between the vehicle and the barrier were plotted for each 

barrier height, as shown in Figure 51. The peak vertical forces were nearly identical for 

the 36-, 42-, and 56-in. (914-, 1,067-, and 1,422-mm) tall barriers. However, the 42- and 

56-in. (1,067- and 1,422-mm) barriers showed a steep decline following the peak vertical 

force. Vertical forces on the vehicle from the 36-in. (914-mm) tall barrier did not decline 

as rapidly. 

V
e
rt

ic
a
l 
F

o
rc

e
 (

k
N

) 

60 
Vertical Force Exerted on the Vehicle 

50 

40 

30 

u 
In \ 

20 ~ 

10 

0 

1 
B I 6 ~ 

I 1( 0 2( 0 

l ,1 
/V 

\~ 

A l '\ I A B C 

3 0 41 0 

Time(ms) 

I A B 

5 0 

C l 

__A_Front Tire-Barrier Force 
_ILVehicle Body-Barrier Force 
_j;_Rear Tire-Barrier Force 



 

 

 

95 

 

 
Figure 51. Total Vertical Force Between the Vehicle and Barrier 

7.1.3 Roll Angle 

As the vehicle was redirected, the roll angle of the vehicle increased. Increased 

vehicle roll pressed the vehicle into the top of the barrier, causing the vehicle to be lifted 

in the air, as shown in Figure 52. Aside from the vertical force exerted on the vehicle, the 

vehicle rolled about the base of the barrier, so the vehicle c.g. lifted up as the roll angle 

increased. The roll angle was largest for the vehicle impacting the 36-in. (914-mm) tall 

barrier, as shown in Figure 53. With the vehicle rolling about the toe of the barrier, the 

vehicle center of gravity rose vertically with increased roll angle. 
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Figure 52. Vehicle Roll Toward the Barrier 

 
Figure 53. Baseline 9.1-degree Single-Slope Barrier Simulation Vehicle Roll Angles 
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7.1.4 Yaw Angle 

The vehicle yaw angle was plotted for each barrier height, as shown in Figure 54. 

While some variation existed between the three runs, the yaw angle was fairly consistent; 

the barrier height does not affect the vehicle yaw angle significantly. 

 
Figure 54. Baseline 9.1-degree Single-Slope Barrier Simulation Vehicle Yaw Angle 
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Figure 55. Baseline Simulation Vehicle Pitch Angles 

7.1.6 Suspension Damage 
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transmitted through the steering link in the simulation was plotted in Figure 56. The 
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Figure 56. Force Transmitted Through the Steering Link 

The lower control arm experienced some damage during the simulation, while the 

upper control arm remained relatively undamaged. Damage to the simulated suspension 

is shown in Figure 57. Comparing this damage to the full-scale damage seen in Figure 9, 

the Silverado suspension damage and the Dodge Ram suspension damage are similar in 

nature, and this extent of damage could be expected in a full-scale crash test. 

 
Figure 57. Suspension Damage for the Model with Tire Deflation 
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7.1.7 Zone of Intrusion Results 

Images of the maximum ZOI during the impact stage and during the tailslap stage 

are shown in Figure 58.  

     
36 in. (914 mm) 

 

     
42 in. (1,067 mm) 

 

     
56 in. (1,422 mm) 

 

Figure 58. Baseline Maximum ZOI Positions 

The procedure for identifying the zone of intrusion points was given in Section 

5.8. ZOI measurements were taken for the baseline simulation for each of the heights of 
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single-slope barrier. Initial measurements showed that the ZOI was larger for shorter 

barriers, which was expected. ZOI results from the baseline simulation are shown in 

Table 11. Shorter barriers allow the vehicle to experience higher roll angles. Also, for 

shorter barriers, the redirective force acting on the vehicle occurs at a lower position on 

the vehicle, which creates a longer moment arm and allows more deflection at the top of 

the vehicle. Simulation results showed that there was no protrusion over and behind the 

56-in. (1,422-mm) tall barrier. This occurred because the tire deflation softened the 

impact between the tire and the barrier, which slightly reduced the yaw moment of the 

vehicle and lowered the severity of the impact during the tailslap phase. 

Table 11. ZOI Comparison for the Baseline 9.1-degree Single-Slope Simulation Model 

Barrier Height 

Zone of Intrusion – in. [mm] 

Front Fender 
Corner of 

Hood 

Rear Corner of 

Box 

Edge of 

Door 

36 in. (914 mm) 11.5 (293) 8.4 (214) 8.5 (216) 9.4 (240) 

42 in. (1,067 mm) 6.3 (160) 5.9 (151) 4.3 (110) 3.4 (85) 

56 in. (1,422 mm) NA NA NA NA 

     

36-in. (914-mm) tall  

Texas 10.8-degree 

single slope barrier 

simulation 

11.2 [285] 8.2 [207] 7.9 [199] 6.9 [175] 

 

ZOI results from the 36-in. (914-mm) tall, Texas 10.8-degree single-slope barrier 

are also shown in Table 11. ZOI values were lower for the 10.8-degree barrier than the 

9.1-degree barrier at every location. From the literature review [3], vertical barriers 

imparted the largest lateral loads on the vehicle, resulting in the highest lateral 

accelerations and the largest moment exerted on the vehicle. Similarly, the steeper single-
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slope barriers show that they encounter higher protrusions from higher lateral impact 

accelerations. Thus, the 9.1-degree barrier would be expected to have higher ZOI values 

than the 10.8-degree barrier. 

As stated in Section 5.8.6, it was assumed that an impact with the front fender 

would not pose a significant risk to the occupants of the vehicle. Thus, the ZOI from the 

baseline model would be determined from the other three ZOI points. For the 36-in. (914-

mm) barrier, the edge of the door protruded 9.4 in. (240 mm) behind the top-front edge of 

the barrier, which was larger than the hood protrusion behind the barrier. For both the 42-

in. and 56-in. (1,067-mm and 1,422-mm) tall single-slope barriers, the hood protruded the 

farthest behind the barrier. 

7.2 Simulation with Tire Deflation 

In Section 3.4, one full-scale crash test indicated that the impacting tire ruptured 

when the sidewall was pinched between the rim and the toe of the concrete barrier. The 

impacting tire pressure for the baseline simulation was plotted for the three barrier 

heights, and the results are shown in Figure 59. All three simulations agreed that the peak 

tire pressure only increased by about 2.2 psi (15 kPa). As noted in reviews of 2270P 

vehicle crash tests, the vehicle tire ruptured during each rigid or restrained-motion 

concrete barrier test. Based on the damage seen on the tire, it is believed that tire pressure 

is not the primary cause of tire deflation during a full-scale impact event. 
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Figure 59. Baseline 9.1-degree Single-Slope Barrier Simulation Tire Pressure 

The tire in the Silverado model is simulated as an airbag. Pressure on the 

sidewalls helps the tire maintain its rigidity. To simulate tire deflation, the pressure inside 

of the tire was brought to zero over 5 ms. Full-scale crash testing was reviewed to 

determine the deflation time for the impacting tire. It was determined that the tire deflated 

at approximately 22 ms after impact, or 82 ms into the simulation.  

7.2.1 Simulation Results 

The maximum protrusions behind the barrier during the impact and tailslap 

phases of the tire deflation simulations are shown in Figure 60.  
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42 in. (1,067 mm) 

 

     
56 in. (1,422 mm) 

 

Figure 60. Maximum ZOI Positions for the Tire Deflation Model 

7.2.2 Vehicle Trajectory 

The c.g. height of the vehicle is shown in Figure 61. With the simulated tire 

deflation, the vehicle c.g. did not climb up the barrier as high. However, the decreased 

c.g. height corresponded with higher roll angles toward the barrier, as shown in Figure 
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62. The yaw and pitch angles for the model with tire deflation were similar to the angular 

deflections seen in the baseline model. 

 
Figure 61. Tire Deflation Simulation Vehicle C.G. Height 

 
Figure 62. Tire Deflation Simulation Vehicle Roll Angle 
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door showed lower ZOI values than those seen in the baseline simulations. Once again, 

the 56-in. (1,422-mm) tall barrier did not show any protrusion behind the barrier. 

Table 12. ZOI Results for the Model with Tire Deflation 

Barrier Height 

Zone of Intrusion – in. (mm) 

Front Fender 
Corner of 

Hood 

Rear Corner of 

Box 

Edge of 

Door 

36 in. (914 mm) 11.6 (295) 8.5 (216) 8.5 (215) 8.8 (223) 

42 in. (1,067 mm) 6.3 (160) 6.1 (155) 4.4 (112) 3.0 (77) 

56 in. (1,422 mm) NA NA NA NA 

 

7.2.4 Tire Deflation Recommendation 

Between the baseline simulation model and the tire deflation model, the major 

difference in ZOI values was seen at the edge of the door, which was the maximum ZOI 

point for the 36-in. (914-mm) tall barrier simulation. For the joint suspension models, it 

was recommended that tire deflation be included to model a realistic impact. However, it 

is unknown whether the method of simulating tire deflation accurately depicts real tire 

deflation.  

7.3 Suspension Joint Failure Models 

Three joints connect the wheel to the vehicle – the upper control arm, the lower 

control arm, and the steering link. All three joints must fail in order for the wheel to 

detach from the vehicle. Suspension failure times were determined from analyzing full-

scale test results and reviewing the forces transmitted through each joint in the wheel 

from the simulations.  



 

 

 

107 

 

Based on what was reviewed from full-scale crash testing, it was expected that the 

vehicle would encounter full suspension failure or failure of the lower control arm and 

steering link. Other suspension failure modes were analyzed to determine the most 

critical suspension failure mode. Tire deflation was modeled for each of the models 

incorporating suspension joint failure. This would also create a more severe impact with 

the barrier, since simulation testing with tire deflation showed a larger ZOI than the 

baseline model. 

The vehicle positions at the maximum ZOI during the impact and tailslap phases 

for each of the suspension failure test are shown in Figures 63 through 65.  
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Figure 63. Maximum ZOI Positions for the Full Suspension Failure Simulation 
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Figure 64. Maximum ZOI Positions for the Model with Lower Control Arm and Steering 

Link Failures 
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Figure 65. Maximum ZOI Positions for the Model with Lower Control Arm Failure 
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Vehicle trajectories from the suspension failure models were similar to those seen 

in the baseline model. However, for each model incorporating joint failure, the damage to 

the suspension was notably larger than the damage shown in Figure 57. For example, for 

the model where the tire disengaged from the vehicle (i.e. all three wheel joints failed), 

the lower control arm and upper control arm encountered significant plastic deformation, 

as shown in Figure 66. These deformations are notably larger than those seen in the full-

scale crash test into an F-shape barrier, shown in Figure 9. However, the effects of the 

geometrical differences between the Dodge Ram suspension and the Silverado 

suspension prevent direct comparison of the damage to the two vehicles. 

 
Figure 66. Suspension Damage for the Model with Full Suspension Failure 

For the simulations run with suspension component failure, the model utilizing 

full suspension failure (i.e. all three joints connecting the wheel to the vehicle) 

experienced the greatest ZOI, as shown in Table 13. With all of the joints failing, the 

wheel did not provide as large of a redirective force initially, allowing the vehicle to 
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penetrate slightly farther behind the system during the impact phase. Comparing the joint 

failure ZOIs to the values obtained in the tire deflation simulations, the rear corner of the 

box and the edge of the door did not protrude as far in the suspension failure tests.  

Table 13. ZOI Values for Tire Suspension Failure Models 

Barrier Height 

Zone of Intrusion – in. (mm) 

Front Fender 
Corner of 

Hood 

Rear Corner of 

Box 

Edge of 

Door 

Full Suspension Failure 

36 in. (914 mm) 12.2 (310) 9.0 (228) 8.2 (207) 8.5 (216) 

42 in. (1,067 mm) 6.4 (162) 6.5 (165) 4.5 (113) 2.7 (67) 

56 in. (1,422 mm) NA NA NA NA 

Lower Control Arm Failure Only 

36 in. (914 mm) 11.6 (295) 8.5 (217) 8.4 (213) 8.6 (217) 

42 in. (1,067 mm) 6.3 (161) 6.1 (156) 4.7 (121) 3.3 (83) 

56 in. (1,422 mm) NA NA NA 0.4 (11) 

Steering Link and Lower Control Arm Failure 

36 in. (914 mm) 12.2 (310) 8.9 (226) 8.1 (207) 8.6 (217) 

42 in. (1,067 mm) 6.4 (162) 6.4 (163) 4.2 (108) 2.3 (58) 

56 in. (1,422 mm) NA NA NA NA 

 

 

For the models that did not include failure of the steering link, forces transmitted 

through the steering joint exceeded the forces noted in Figure 56 and were significantly 

higher than the force transmitted through any other joint. For this reason, it is believed 

that those models provided an inaccurate depiction of the impact scenario. 
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Only one of the models experienced protrusion above the 56-in. (1,422-mm) tall 

barrier, and this occurred only when the lower control arm failure was modeled. All of 

the other models showed that the ZOI was zero for each impact. However, the force 

transmitted through the steering link was excessively large in that model and is believed 

to have caused the protrusion. 

7.4 Zone of Intrusion for Wisconsin 9.1-Degree Single-Slope Barriers 

The maximum ZOI was taken from Tables 11 through 13. As stated in Section 

5.8.6, a longitudinal impact with the fender behind the barrier is assumed to not pose a 

risk to the vehicle occupants. The maximum protrusion of the other three ZOI points is 

shown in Table 14. The maximum fender protrusion was also shown in Table 14.  

Table 14. Zone of Intrusion of the Rigid Wisconsin 9.1-degree Single-Slope Barrier 

Barrier Height 

in. (mm) 

Fender ZOI 

in. (mm) 

Hood ZOI 

in. (mm) 

Rear Corner 

of Box ZOI 

in. (mm) 

Edge of Door 

in. (mm) 

36 (914) 12.2 (310) 9.4 (240) 8.5 (215) 9.4 (240) 

42 (1,067) 6.4 (162) 6.5 (165) 4.5 (113) 3.4 (85)  

56 (1,422) 0 (0) 0 (0) 0 (0) 0 (0) 

 

7.5 Working Width Analysis 

Working width is measured from the frontmost point on the barrier to the 

rearmost point on the system or vehicle during an impact. The working width depends on 

the vehicle protrusion behind the barrier, the barrier deflection, and the width of the 

barrier. For rigid, unmoving systems (such as permanent concrete barrier systems), the 

working width is measured as the largest of two values: 
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 (Maximum Zone of Intrusion)+(Distance from Top Front Corner to Front 

Corner of Barrier) 

 Maximum Width of Barrier 

For temporary, non-rigid barrier systems, the working width may also be: 

 (Maximum Barrier Deflection)+(Width of Barrier at Point of Maximum 

Deflection) 

Note that the temporary barriers rotate during impact, and the top back corner of 

the barrier may protrude further back than the toe of the barrier.  

For these barriers, the full barrier width was 24 in. (610 mm). The L value for 

each of the barriers is given in Table 15. The working width measurements used during 

these simulations is shown in During each of the simulations, the vehicle did not protrude 

beyond the back edge of the barrier, so the working width in each simulation was the 

width of the barrier.  

Table 15. Working Width for the Rigid Wisconsin 9.1-degree Single-Slope Barrier 

Barrier 

Height 

in. (mm) 

Distance from Frontmost Point on the 

Barrier to the Top Front Corner 

in. (mm) 

Maximum 

Working Width 

in. (mm) 

Maximum 

Working Width 

in. (mm) 

36 (914) 5.75 (146) 12.2 (310) 24.0 (610) 

42 (1,067) 6.75 (171) 6.5 (165) 24.0 (610) 

56 (1,422) 9 (229) 0 (0) 24.0 (610) 
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Figure 67. Working Width Measurements 
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8 SIMULATED OCCUPANT RESEARCH 

The automotive industry has been successfully modeling dummies in vehicles for 

many years. Unfortunately, details of such models are not available due to proprietary 

reasons. Simulating dummies in roadside safety applications has been rare. Work 

presented herein is a first attempt at such modeling. These techniques are complicated 

and will need significant research before results could be considered realistic. 

8.1 Introduction 

Instrumented and non-instrumented dummy occupants have been used in crash 

testing for decades. However, following a study conducted by TTI in the 1980’s, 

instrumented dummies were not recommended for use in full-scale crash-testing, and 

have not been extensively used since [31]. Since the implementation of NCHRP Report 

No. 350, only non-instrumented dummy occupants have been utilized in concrete barrier 

testing. However, not all testing agencies utilize dummy occupants in their tests, and 

MwRSF has been the only testing agency to place a dummy occupant into a 2270P 

vehicle when impacting a rigid concrete barrier system. Simulating a dummy occupant in 

the 2270P model would allow for further research into occupant interactions with a 

vehicle’s interior during a full-scale crash event. 

The automotive industry has been successfully modeling dummies in vehicles for 

many years. Unfortunately, details of such models are not available due to proprietary 

reasons. Simulating dummies in roadside safety applications has been rare. Work 

presented herein is a first attempt at such modeling. These techniques are complicated 

and will need significant research before results could be considered realistic. 
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8.2 Simulated Occupant Model Components 

8.2.1 Dummy Occupant Model 

Several dummy models are available from the Livermore Software Technology 

Corporation (LSTC) [33]. A 95
th

 percentile male dummy model was chosen for this 

study, as shown in Figure 68. The larger male dummy represents one of the largest and 

heaviest human dummies available with the highest inertia; thus, the 95
th

 percentile male 

dummy would have the greatest effect on the vehicle motion. A more detailed 95
th

 

percentile male dummy model was also available. However, it was believed that the 

general dummy motion and its effect on the vehicle trajectory for an initial study would 

be served best by using the simplified, reduced model.  

 
Figure 68. Simulated Occupant Model 
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8.2.2 Seat Model 

The front seats in a 2007 Silverado pickup truck are bucket seats, and the optimal 

simulation would include similar seat geometry. Developing a new seat model would be 

costly and take a lot of time, and the seat model was outside of the scope of this research. 

Bucket seats were developed and implemented into the 2008 Toyota Yaris model [34]. 

The seat from the Yaris model was isolated and used for these simulations, and is shown 

in Figure 69. 

 
Figure 69. Bucket Seat Model 

8.2.3 Seatbelt Model 

A retracting seatbelt model was provided in a tutorial from LSTC. The model 

included meshed fabric seatbelt elements that were in contact with the occupant and thin, 

1-dimensional beam elements to simulate the rest of the seatbelt, as shown in Figure 70. 
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The retracting seatbelt model was configured to draw tight against the occupant as the 

simulation started. Sensors in the seatbelt were set to detect a threshold acceleration and 

lock the retractor to prevent the seatbelt from spooling out.  

 
Figure 70. Seatbelt Model 

8.3 Seat Stability and Acceleration 

In order to help verify that the seat model would perform acceptably in the 2270P 

model, it was set in motion following a trajectory similar to a full-scale crash test. A rigid 

block was created to simulate the vehicle, and the seat model was rigidly attached to the 

block, as shown in Figure 71. The block and seat traveled forward at 62.1 mph (100 

km/h). After 133 ms, a lateral acceleration was applied to the block, and the simulation 

was allowed to run for 250 ms. The lateral acceleration curve was similar to the 

I 
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acceleration trace observed in the simulations with the 9.1-degree single-slope concrete 

barrier. The acceleration curve is shown in  

 
Figure 71. Seat and Rigid Block Model 
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Figure 72. Seat Acceleration Curve 

Simulations showed that the seat model was stable, and lateral accelerations did 

not cause the seat model to fail. The seat did not deform significantly, and the seat was 

determined acceptable for use in the next phase of simulations. 

8.4 Occupant-In-Seat Model 

The dummy model was placed into the seat model attached to the rigid block, as 

shown in Figure 73. The limbs on the dummy were positioned to be similar to the 

positioning of the dummy’s limbs during a full-scale crash test by using the dummy 

positional tools available in the preprocessing software LS-PrePost. The dummy was 

moved until it was nearly touching the seat. However, there was a separation between the 

dummy and the seat, ensuring that there would be no initial penetrations in the contact 

when the simulation started. The simulated occupant was reclined to match the shape of 

the seat as well.  
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Figure 73. Seat, Rigid Block, and Simulated Occupant Model 

After the dummy and seat model showed stability traveling straight forward, a 

lateral acceleration was applied to the rigid block supporting the seat model. As the seat 

accelerated, the dummy slid off of the seat, rotating away from the seat, as shown in 

Figure 74. 
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Figure 74. Dummy Sliding Out of Seat 

8.4.1 Hourglassing and Element Formulation 

Hourglassing is unforced deformations of the material, a mathematical 

phenomenon that is physically impossible. Hourglassing was noted in the seat bottom as 

the dummy slid off of the seat. Fully-integrated elements do not experience hourglassing. 

Thus, the element formulation was switched to the fully-integrated formulation.  

Simulation time for the seat and block model nearly doubled using the fully-

integrated element formulation in the seat base. Comparisons between the fully-

integrated and the default constant-stress solid element formulation showed little 

difference in the dummy trajectory. 
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Despite the hourglassing observed in the lower seat, the constant-stress solid 

element formulation was the most cost-effective and stable material to model the seat 

foam, and it was used for the remainder of the simulations. 

8.5 Seatbelt Stability and Acceleration 

The seatbelt model was positioned in front of the dummy model in the seat, and 

the ends of the seatbelt were rigidly attached to the seat. The seatbelt was not tight 

against the occupant to prevent the seatbelt elements from intersecting the dummy 

elements. A simulation was conducted to determine the stability of the seatbelt with the 

seat, as shown in Figure 75. For this simulation, the dummy was removed. 

 
 

Figure 75. Seatbelt, Seat, and Rigid Block Model 
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The seatbelt was modeled using the MAT_FABRIC material, which has a 

relatively large tensile strength but a small compressive strength, which attempts to 

simulate minimal bending stiffness of a fabric. As the seatbelt was accelerated laterally, 

the elements began to buckle, as shown in Figure 76. This did not cause instability in the 

simulation, and no steps were taken to remove the seatbelt buckling. 

  
 

Figure 76. Belt Deformation During Simulation 

8.6 Seatbelt and Simulated Occupant 

8.6.1 Seatbelt Model with Beam Elements 

The dummy occupant was placed in the seat attached to the rigid block, and the 

seatbelt was placed to restrain the occupant in the seat. As the rigid block accelerated 

laterally, the dummy slid out of the seat and the seatbelt attempted to prevent the lateral 
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motion of the occupant. The lap belt stretched and traveled with the dummy and did not 

restrain the occupant’s lateral motion, as shown in Figure 77. 

 
 

Figure 77. Seatbelt Stretch 

8.6.2 Seatbelt Model with Shell Elements Fixed to Seat 

To provide increased resistance to the lateral motion of the dummy during the 

impact, the beam elements were removed from the seatbelt model, and the shell elements 

on the ends of the seatbelt were rigidly attached to the seat. When this simulation was 

performed, more realistic results were observed. The 2-dimensional elements deformed, 

but it did not show unreasonable behavior, as shown in Figure 78. The simulated 

occupant pushed against the belt, and the belt properly restrained the occupant’s motion. 
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However, it was noted that, for these simulations, the seatbelt did not extend downward 

far enough, and the occupant was able to slip under them and escape from the seatbelt.  

 
 

Figure 78. Seat, Seatbelt, and Dummy Accelerated to the Left 

The seat and rigid block were accelerated in the other direction, as shown in 

Figure 79. Since the seatbelt was rigidly attached to the seat, the force from the seatbelt 

resisting the occupant’s movement caused the seat to deform. Also, the lap belt 

sufficiently restrained the occupant’s lateral motion. However, the end of the shoulder 

strap contacted the neck of the dummy, showing potential to allow the dummy to release 

underneath it, which is not realistic. 
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Figure 79. Seat, Seatbelt, and Dummy when Accelerated to the Right 

8.7 Implementation into the Vehicle 

8.7.1 Model Description 

The dummy, seat, and seatbelt model were placed in the 2270P vehicle. The legs 

of the seat were rigidly attached to the floorboard of the vehicle, the lap seatbelt was 

rigidly attached to the floorboard of the vehicle on both sides of the seat, and the shoulder 

seatbelt was rigidly attached to the floorboard and the vehicle’s A-pillar.  

The 2270P vehicle model with the dummy occupant was simulated impacting into 

the 36-in. (914-mm) tall, 9.1-degree single-slope concrete barrier. The model was 

simulated without any suspension component failure or tire deflation.  

..........................•....................... .................................................. ......................................•...•....... ...............•..•......•....•.................. ................................................. .............................................•.. ................................................ ............................................... , 
··························•··•······•····•··•··· ................................................... .................................................. .................................................. 
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8.7.2 Simulation Results 

Simulation results are shown in Figure 80, and the dummy reaction in the vehicle 

is shown in Figure 81. The vehicle rolled over during the simulation. A simulation 

performed without a dummy in the seat showed behavior similar to the baseline 

simulation behavior in Section 7.1, which shows that the presence of the dummy 

occupant changes the vehicle trajectory during the simulation.  
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120 ms                                                                   205 ms 
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Figure 80. Dummy, Seat, Seatbelt, and Vehicle Simulation 
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Figure 81. Dummy Reaction in the Vehicle 
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8.7.3 Head Protrusion Out of Vehicle 

As the dummy impacted the door of the vehicle, the top of the impact-side door 

separated from the vehicle and the dummy occupant’s head protruded outside of the 

vehicle, as shown in Figure 82. The deflection of the top of the door was compared 

between full-scale tests conducted with and without dummies, as shown in Figure 83. 

Note that both of these tests utilized restrained-motion barriers. There have not been two 

similar tests conducted with 2270P vehicles on rigid concrete barrier systems. 

 
0.110 sec 

 

 
0.140 sec 

Figure 82. Head Protrusion Out of the Vehicle 
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No Dummy Occupant [17] 

 

 
Dummy Occupant [21] 

 

Figure 83. Door Deflection With and Without Dummy Occupants 



 

 

 

134 

 

The window pane separated from the door in the lower photo in Figure 83. This 

behavior was not observed in every full-scale test, but the deflection at the top of the door 

was similar to the deflection from other tests (see Reference 18). This behavior was noted 

in full-scale crash tests into restrained-motion temporary barrier systems. Vehicle 

trajectory was similar between rigid and restrained-motion concrete barrier systems. 

Thus, it is believed that the protrusion of the dummy occupant’s head out of the window 

in the simulation was not realistic in this simulation. 

8.7.4 Seatbelt Forces 

The seatbelt was initially slack on the occupant, and it did not exert a force on the 

occupant until approximately 50 ms after impact (110 ms into the simulation), as shown 

in Figure 84. Note that the impact between the vehicle and the barrier occurred at 60 ms 

in Figure 84. The lateral force exerted by the seatbelt on the occupant occurred in two 

peaks. The first peak was caused by the occupant’s neck contacting the shoulder belt. The 

second peak occurred after the occupant’s torso exited the chair and the lap belt resisted 

the lateral motion of the occupant. The occupant’s torso contacted the door at 

approximately 105 ms which was before the seatbelt applied a force on the occupant. It is 

believed that an actual seatbelt would provide more resistance to the lateral motion of the 

occupant than what was observed during this simulation. 
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Figure 84. Seatbelt Forces on the Dummy Occupant 

8.7.5 Impact Between the Occupant and the Door 

The contact forces between the door and the occupant are shown in Figure 85. 

Impact forces climbed to nearly 3100 lb (14 kN) between the body of the occupant and 

the door. The maximum force between the head and the window was approximately 900 

lb (4 kN). Contact forces between the occupant body and the door decreased as the 

seatbelt force on the dummy increased. 
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Figure 85. Forces Between the Dummy Occupant and the Door 

8.8 Comparison with the Baseline 

The dummy-in-vehicle simulation was compared to the baseline 36-in. (914-mm) 

tall, 9.1-degree single-slope barrier simulation described in Section 7.17.1. The vehicle 

model, barrier, and impact conditions were the same for both simulations. The only 

difference between the two was the inclusion of the dummy, seat, and seatbelt model.  

8.8.1 Vehicle Vertical C.G. Displacement 

The vertical displacement of the vehicle was very similar between the two 

simulations, as shown in Figure 86. Note that impact in this simulation occurred at 60 ms. 

The dummy, seat, and seatbelt inclusion did cause the vehicle to travel slightly higher, 

but as time progressed, the vertical displacement of the vehicles converged. The vertical 

force between the vehicle and the barrier is shown in Figure 87. There was little 
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difference in the vertical forces between the two simulations until the tailslap phase, 

where the vehicle with the occupant had a slightly higher vertical force. 

 
Figure 86. Vehicle Vertical Displacement 

 
Figure 87. Vertical Force between the Vehicle and the Barrier 
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8.8.2 Vehicle Roll Angle 

The roll angles of the baseline and dummy-in-vehicle simulations are shown in 

Figure 88. Note that impact occurred at 60 ms into the simulation. The roll angles 

diverged at approximately 105 ms, which was the same time that the dummy occupant 

impacted into the door. The roll angular rates of the two simulations were filtered using 

an SAE 60 12-point average filter and are shown in Figure 89. The roll rates were larger 

for the vehicle model that included the dummy model, but the roll rate peaks occurred at 

the same time in each simulation.  

 
Figure 88. Vehicle Roll Angle 
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Figure 89. Vehicle Roll Angular Rates 

8.9 Conclusions and Future Work 

The inclusion of a dummy, seat, and seatbelt model into a 2270P simulated 

vehicle caused the vehicle to roll over during the simulation. The impact between the 

dummy and the door was more severe than impacts seen in full-scale crash testing, and 

several factors may have caused this: 

 Impact forces between the dummy occupant and the door were relatively 

large. Based on the deflection of the door during the simulation, it is 

believed that this force was excessive. However, the actual impact forces 

between the dummy occupant and the vehicle door are currently unknown. 

 The seatbelt model was not initially in contact with the occupant, 

providing a gap between the dummy occupant and the belt. At the same 

time, the dummy occupant was not initially in contact with the seat. The 
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dummy settled into the seat as the simulation progressed, which further 

separated the occupant from the seatbelt. A large gap existed between the 

seatbelt and the dummy occupant at impact time. Thus, the dummy 

occupant traveled unrestrained laterally for some time before impacting 

the door.  

 The top-front corner of the 9.1-degree single-slope barrier was modeled as 

three lines connected by sharp points. The sharp edges defining the top of 

the barrier may have contributed to the vertical force on the vehicle, 

increasing the vehicle climb. However, this does not explain why the 

vehicle rolled over.  

This simulation model needs improvement and verification before the dummy-in-

vehicle model can be used to quantitatively assess the interaction between the occupant 

and the occupant compartment. 

 The dummy occupant that was chosen for this simulation was a simplified 

dummy model. Other 95
th

 percentile simulated male occupants may impart 

different forces on the door.  

 The coefficient of friction between the vehicle and the barrier (studied in 

Section 5.9) showed that lower vehicle-to-barrier friction coefficients 

caused higher yaw rates into the barrier, which contributes to the severity 

of the impact between the dummy and the door. Choosing a higher friction 

coefficient may reduce the force between the vehicle and the door.  

 At impact, the seatbelt should be taut against the dummy occupant. This 

could be performed by allowing the dummy to settle into the seat, 
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prestressing the foam seat bottom and backs to support the occupant, and 

tightening the seatbelt on the model to make a more snug fit. 

 Contact definitions need to be improved for the seatbelt and occupant. The 

legs intersected each other during the simulation, and the seatbelt went 

through the chair. While these intersections probably would not drastically 

affect the trajectory of the vehicle, they are pertinent for studying the 

interaction between the occupant and the occupant compartment. 

8.10 Disclaimer 

Note: the following is duplicated from the beginning of this chapter, but it 

warrants repeating. 

The automotive industry has been successfully modeling dummies in vehicles for 

many years. Unfortunately, details of such models are not available due to proprietary 

reasons. Simulating dummies in roadside safety applications has been rare. Work 

presented herein is a first attempt at such modeling. These techniques are complicated 

and will need significant research before results could be considered realistic. 
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9 CONCLUSIONS 

Simulation of a 2270P Silverado model impacting 36-in., 42-in., and 56-in. (914-

mm, 1,067-mm, and 1,422-mm) tall, 9.1-degree single-slope concrete barriers were 

performed according to the TL-3 specifications set forth in MASH. Prior to the 

simulations being conducted, an extensive literature review and parameter study was 

conducted to verify that the values determined in this study were the most realistic. 

Critical ZOIs and working widths were calculated from this research. Each barrier was 

evaluated under multiple suspension failure conditions, and the maximum values for each 

barrier height are shown in Table 16. It was assumed that the fender protrusion would not 

pose a risk to the vehicle’s occupants if impacted behind the barrier, but it is shown in 

Table 16 for comparison. Note that the fender only protruded the farthest for the 36-in. 

(914-mm) tall, single-slope barrier. 

Table 16. ZOI and Working Width of the Rigid 9.1-degree Single-Slope Barrier 

Barrier Height  

in. (mm) 

Fender ZOI  

in. (mm) 

Hood ZOI 

in. (mm) 

Working Width 

in. (mm) 

36 (914) 12.2 (310) 9.4 (240) 24.0 (610) 

42 (1,067) 6.4 (162) 6.5 (165) 24.0 (610) 

56 (1,422) 0 (0) 0 (0) 24.0 (610) 

 

For these simulations, the working width was dependent on the vehicle 

penetration behind the barrier (or the ZOI) and the width of the barrier. However, none of 

the vehicle components protruded beyond the back of the barrier. Thus, the working 

width for each system was determined to be the width of the barrier, as shown in Table 

16. 



 

 

 

143 

 

10 FUTURE WORK 

For this study, several issues were noted that warrant further investigation in order 

to gain a better understanding of concrete barriers, further investigate the zone of 

intrusion, and to improve vehicle to concrete barrier models. 

10.1 Concrete Barrier Research 

 Many of the concrete barriers on the roadway today were designed for 

vehicles and impact conditions from over 40 years ago. The vehicle fleet 

has changed dramatically in 40 years, yet concrete barriers have not. 

Research conducted by the Southwest Research Institute while developing 

the F-shape barrier showed that steeper barrier slopes resulted in more 

stable vehicle trajectory [30]. The Texas single-slope barrier was 

developed based on the width of many medians seen in Texas, while the 

California single-slope barrier was developed based on the width of many 

medians seen in California. With the resources available to researchers 

today, a concrete barrier can be designed for today’s vehicle fleet to 

optimize vehicle stability, reduce vehicle damage, and prevent rollover. 

 Full-scale pickup truck crash tests into concrete barriers have only been 

performed at an impact angle of 25 or 20 degrees. However, when the 

New Jersey barrier was developed, it was understood that the vehicle 

trajectory changed with impact angle, and some impact angles were noted 

to have adverse effects on vehicles. It is recommended that each concrete 

barrier system be evaluated at different impact angles ranging from 25 

degrees down to 2 degrees. 
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 As noted in this study, unrestrained or lightly-restrained temporary barrier 

systems behave differently from restricted-motion temporary barrier 

systems and permanent, rigid concrete barrier systems. With a wealth of 

crash tests available, researchers may be able to note similarities between 

temporary barrier systems and determine factors affecting vehicle 

trajectory and impact severity for temporary barrier systems. Such 

research could also give more insight into the effects of restricting barrier 

motion. 

 Several concrete barrier research reports suggested that the interaction 

between the vehicle and the barrier was dependent on the c.g. height of the 

impacting vehicle. With modern crash-testing standards, the vehicle c.g. 

height is fairly static, and a small sampling of c.g. heights is available. In 

order to assess the crashworthiness of each barrier system for a variety of 

vehicles, concrete barriers must be evaluated when impacted by vehicles 

of different c.g. heights. 

10.2 Vehicle and Vehicle Model Research 

 The anti-roll bar in a vehicle is important for good vehicle dynamics 

behavior. Its influence on rollover during an impact event is unknown. An 

investigation into the roll bar on both the C2500 and Silverado models is 

recommended. 

 For both the 2270P and 2000P vehicle models, the vehicle climb up the 

barrier was less than observed in full-scale crash testing. Further work is 

needed to investigate the vehicle climb up a concrete barrier. 
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10.3 ZOI Research 

 During this test, the ZOI was determined for three barrier heights of the 

9.1-degree single-slope barrier. ZOI values have not been determined for 

the New Jersey, F-Shape, vertical, or Texas 10.8-degree single-slope 

barrier at other heights. This effort would require a detailed investigation 

of the front-end geometry for various pickup trucks (e.g. the Dodge Ram 

vs. the Chevy Silverado). Full-scale crash tests and simulations are 

recommended to determine the ZOI for other types of concrete barriers. 

 ZOI is measured from critical points on the vehicle that may impact 

objects behind the front face of the barrier. Currently, it is assumed that 

the fender does not pose a risk to the occupant compartment, but impacts 

with the hood will cause risk of penetration. However, it was noted in 

crash test no. CBPP-1 that an impact from the vehicle hood into a rigid 

concrete pier behind the barrier did not pose a risk to the occupants of the 

vehicle [14]. To best understand how to measure ZOI, research should be 

conducted to determine the critical points on the barrier. 

 Crash testing agencies rarely conduct full-scale crash tests at impact 

angles higher than 25 degrees. For higher-angle impacts, the impact 

severity is higher, and this would result in higher ZOI values. At some 

angle, the ZOI will be at a maximum. Finding the angle of maximum ZOI 

would help researchers understand how better to shield occupants from 

hazards located behind or on top of barrier systems. 
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 TTI conducted a test to determine the ZOI of a free-standing temporary 

barrier system [13]. A 2270P vehicle impacted into a 32-in. (813-mm) tall 

F-shape temporary concrete barrier with a rigid sign mounted on it, and 

the lateral distance between the top-front corner of the barrier and the sign 

was less than 3 in. (76 mm), which violated the ZOI. The test passed 

without the hazard causing excessive accelerations or penetrating into the 

occupant compartment. Since vehicle trajectory differs greatly between 

free-standing temporary barrier systems and rigid barrier systems, the ZOI 

is also expected to be different between the two systems. Research 

conducted into barrier resistance and ZOI could give greater insight into 

how ZOI can be applied to non-rigid systems. 

10.4 Dummy Occupant Research 

 For many crash tests, the 95
th

 percentile male dummy is used because it 

tests the most massive dummy, which may have the greatest protrusion out 

of the vehicle and may cause the most significant difference in vehicle 

trajectory. Thus, other dummy types are not currently evaluated in 

roadside safety applications. 

 While simulated occupants are placed in the front seat of many crash tests 

conducted according to MASH standards, there has been no research 

conducted to determine the effect of impacting barriers on occupants in 

other seating positions. As noted during this research, the impact-side rear 

door separated from the vehicle more than the impact-side front door. 

Thus, occupant ejection may be more severe at other locations in the 
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vehicle. The effect of placing a dummy at other locations in the vehicle 

would have to be evaluated to determine this effect. 

 In the 1980s, the Texas A&M Transportation Institute published a report 

explaining how instrumented dummies do not provide an accurate 

measurement of impact severity or occupant safety during a crash event 

[31]. Following that report, TTI ceased to use dummies in their concrete 

barrier crash tests, and little research has been performed on the 

interaction between the occupant and the occupant compartment during a 

crash test. With new resources available to researchers today, occupant 

safety evaluation can be performed realistically with repeatable, accurate 

results. Since so little research has been conducted on occupant safety 

inside the occupant compartment during a full-scale crash, this is an area 

that warrants investigation. Work was performed in this study to set the 

grounds for future evaluation of the effects of crash tests on occupants, but 

it must be expanded. 
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Appendix A. 2000P SIMULATIONS WITH THE F-SHAPE BARRIER 

A.1 Introduction 

A physical analysis of one impact between a 2000P vehicle and an F-shape 

concrete barrier was conducted and reviewed in Section 3.4. However, simulation models 

do not always closely resemble physical testing, and continued work is needed to 

improve any model. While finite element software allows for intricate analysis of 

component interactions with roadside barriers and the barriers’ responses, research 

studies on intricate dynamic evaluation of concrete barriers are not widely available. 

Thus, simulations were conducted to review the behavior of a vehicle impacting a 

concrete barrier and to determine factors affecting the simulation. Results from these 

simulations would provide insight into contact definitions and expected simulated vehicle 

motion for the Silverado model. 

A.2 Model Description 

In 2010, a study was conducted to determine the zone of intrusion of a 2000P 

vehicle impacting a 40-in. (1,016-mm) tall F-shape permanent concrete barrier [A-1]. LS-

DYNA simulations were performed according to NCHRP Report No. 350 standards 

utilizing a C2500 pickup truck model to determine the ZOI of the barrier at different 

speeds.  

The vehicle model and barrier materials from the 2010 ZOI study served as the 

basis for the 2000P simulations. The vehicle model, contact definitions, the barrier 

material model, and simulation controls were copied from this model. An LS-DYNA 

model of a 32-in. (813-mm) tall F-shape concrete barrier was drawn and meshed for use 
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with the 2000P vehicle. The mesh on the barrier was 40 mm by 40 mm, and the barrier 

material was the standard simulated rigid material.  

Simulation and parameter work performed in the late 1980s by TTI showed 

coefficients of friction between the vehicle and the barrier to be between 0.4 and 0.8 [A-

2]. However, the coefficient of friction determined from simulation parameter studies 

may not correlate with the coefficient of friction best defining the impact in the 

simulation.  

The friction behavior between two objects in simulations is dependent on a 

number of factors, including mesh size, material, and simulation timestep [A-3]. In the 

2010 ZOI study, the barrier model utilized coefficients of friction of 0.05, 0.3, and 0.6. 

The 0.6 coefficient of friction was chosen to review the C2500 simulated impact for this 

study. 

A.3 Simulation Results 

Simulation results were compared to a full-scale test that was conducted on the F-

shape barrier system at similar impact conditions [A-4]. A comparison between the 

simulation and the full-scale crash test is shown in Figure A-1. Differences between the 

full-scale results and the simulation results provided insight into potential improvements 

in the vehicle model. 
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 0.000 sec  

 0.100 sec  

 0.200 sec  

 0.330 sec  

 0.500 sec  

Figure A-1. Sequential Comparison of Test No. KTB-1 and the Baseline Simulation 
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The simulation results diverged from the full-scale test in several areas. The most 

notable differences in the simulated model were that the vehicle rolled toward the barrier, 

the impacting tire did not climb the upper sloped face, and the front tires steered away 

from the barrier during the impact.  

For this model, the zone of intrusion of the vehicle was consistent with the ZOI 

observed in the full-scale test. For C2500 impacts into rigid concrete barriers, the corner 

of the hood has protruded the farthest behind the front face of the barrier. In the 

simulation, the hood protruded the farthest as well. As measured from the protruding 

hood member, the ZOI for the simulation model was 16.5 in. (418 mm). 

During an impact with a sloped concrete barrier, the impacting tire deforms 

significantly. Much of this deformation is elastic, although the tire may undergo plastic or 

permanent deformation when it is punctured during the impact. Deformation of the 

impacting tire was reviewed. The deformed tire shape is shown in Figure A-2. 

Unfortunately, comparing the simulated tire deformation to full-scale results was not 

possible as it is difficult to photograph tire deformation during full-scale crash testing.  

 
Figure A-2. Deformed Tire Shape with a 0.6 Coefficient of Friction 
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In the full-scale test, the impacting tire climbed up the upper sloped face of the 

barrier. However, in the simulation, the impacting tire did not climb the upper sloped face 

at all. A plot of the vehicle tire vertical deflection is shown in Figure A-3. The height of 

the barrier overall was 32 in. (813 mm). The height of the toe was 3 in. (76 mm), and the 

height of the toe and lower sloped face was 10 in. (254 mm) above ground level. During 

the impact, the tire compressed, and the center hub height change was not as large as the 

climb of the bottom of the tire. 

 
Figure A-3. Baseline Model Tire Climb 

The vehicle rolled toward the barrier during the impact sequence in the baseline 

simulation, which is inconsistent with all full-scale test results into permanent or rigid 

concrete barrier systems. Vehicle roll toward the barrier was observed in some full-scale 

tests involving unrestrained temporary barriers, but unrestrained temporary barriers were 

not evaluated during this study. The roll angles for the baseline simulation and test no. 

FTB-1 are plotted in Figure A-4. Initially, the roll angle of the model correlated with the 

roll angle of the full-scale model (between 0 and 50 ms). However, after 50 ms (which 
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was approximately the time when the impacting tire contacted the upper slope of the 

barrier), the full-scale vehicle began to roll away from the barrier. In the simulated 

model, the vehicle continued to roll toward the barrier. At approximately 200 ms after 

impact, the rear tire contacted the toe of the barrier. For the simulated model, the vehicle 

ceased to roll towards the barrier temporarily at 200 ms after impact. For the full-scale 

test, the vehicle roll angle continued to increase steadily as the rear tire climbed the upper 

sloped face at 200 ms after impact. Finally, the roll angular rate became constant as the 

vehicle exited the barrier while airborne. 

 
Figure A-4. Roll Angle Comparison 

A.4 2000P Vehicle Impact into F-Shape Barrier Conclusions 

Simulation results diverged greatly from the expected results. The vehicle 

behavior must be evaluated in stages to assess the cause of the divergences. Since the 
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divergence began in the impact stage, analysis of the rest of the stages shows little merit. 

If the baseline model were to be improved, efforts must be undertaken to increase the 

vehicle climb up the barrier.  

The tire model in the C2500 simulated vehicle was developed and tested 

rigorously [A-5]. Based on the behavior of this tire during compression and the amount 

of work required to improve the model, it was assumed that the tire was not the issue. 

The contact between the vehicle and the barrier, the barrier mesh, the barrier material, the 

vehicle suspension, and the timestep were noted as potential improvements that should be 

evaluated to improve the vehicle model. 
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Appendix B. C2500 VEHICLE ANTI-ROLL BAR RESEARCH 

While analyzing the results of the 2000P simulation, it was noted that the anti-roll 

bar in the C2500 simulated vehicle was improperly defined. An anti-roll bar, as shown in 

Figure B-1, is comprised of a single steel tube with outer and inner diameters of 1.341 

and 0.860 in. (34.05 and 21.85 mm), respectively. The bar is tubular to minimize the 

weight, but it is thick enough to resist torque, bending shear, and bending moments. An 

88-degree bend and a 25-degree bend in the bar provide proper alignment and maximize 

the component strength while minimizing stresses due to loading.  

B.1 Physical Roll Bar 

Pins connect the lower control arm to the end of the anti-roll bar on each side. The 

pin is composed of a ¼-in. (6-mm) diameter, 8⅛-in. (206-mm) long hex head bolt. A 1⅜-

in. (35-mm) diameter washer was placed on the end with a 1⅜-in. (35-mm) diameter 

semi-stiff rubber gasket. A ¾-in. (19-mm) diameter, 6½-in. (165-mm) long hollow tube 

with rubber gaskets on both ends was put onto the bolt and a tubular stiffener wrapped 

around the bolt are used to link the anti-roll bar and the suspension. Rotational tolerance 

is allowed in the anti-roll bar’s connection to the pin. However, no translational motion is 

allowed, giving the pin connection three degrees of freedom.  
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Figure B-1. Actual Anti-Roll Bar and Pin Connection  
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The model of the anti-roll bar, pins, and lower control arms are shown in Figure 

B-2. The anti-roll bar must be able to transfer torque as the two ends of the anti-roll bar 

displace, but this is dependent on the connections that define the ends of the anti-roll bar. 

The pin is modeled as a beam element, and the node at the lower end of the pin is merged 

with a node on the lower A-arm, acting as a spherical joint. Thus, the connection between 

the pin and the lower A-arm currently has three unrestrained degrees of freedom. The 

anti-roll bar is also modeled as a beam element, and the nodes at the ends of the anti-roll 

bar are merged with the nodes in the pins, giving the joint three unrestrained degrees of 

freedom. Overall, the anti-roll bar has six unrestrained degrees of freedom in the current 

simulated model.  
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Figure B-2. Simulated Anti-Roll Bar, Pins, and Lower Control Arms 

B.2 Anti-Roll Bar Modeling Research 

Anti-roll bars, common safety measures which were patented as early as 1965 [B-

1], are often used to mitigate risk of rollover in minor to moderate turning situations. 

Vehicle dynamics dictate the need for simple, reliable steering mechanisms as well as 

mechanisms to stabilize vehicle motion during roll.  

An anti-roll bar is designed to resist the roll tendency of a vehicle when the 

vehicle is cornering or turning [B-2,B-3]. As a vehicle body rotates, the tires camber 

changes in the direction of the turn. The outside wheel tends to deflect and cause 
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suspension compression while the inside turning wheels are typically subjected to an 

opposite tensile force, or rather, the spring on the inside suspension tends to unload. This 

generates a roll moment applied to the vehicle which counteracts the frictional moment 

caused by the lateral ground force at the turning wheels. By centering the steering 

through the vehicle’s roll center, suspension designs can be minimalistic, and optimum 

configurations of the anti-roll bar and suspension can be developed. 

In 2003, Kemal Caliskan published a thesis detailing the design and optimization 

of rollbars using finite-element analysis [B-4]. He explained that roll bars were 

commonly constructed from SAE 5160 with a modulus of elasticity of 29.9 Mpsi (206.0 

GPa) and a Poisson’s ratio of 0.27, with a yield strength of 171 kpsi (1180 MPa) and a 

density of 487 lb/ft
3
 (7800 kg/m

3
). However, most of this work was involved in the 

design of an anti-roll bar, and the paper recognized some inaccuracies in the data and 

method. Thus, aside from any corrections to the anti-roll bar constraints, research will 

still need to be performed to verify the material and sectional model of the anti-roll bar in 

order to accurately obtain vehicle suspension behavior. 

For his thesis, Dustin Boesch remodeled the FEA model of the suspension of the 

C2500 pickup truck [B-5]. However, he did not review the anti-roll bar or the steering 

linkage. 

B.3 Solid-Element Anti-Roll Bar Model 

An anti-roll bar was meshed using solid elements. The end of the sway bar where 

it attaches to the pin has an irregular geometry, as the tube is squished to form a 

rectangular cross-section. Despite multiple meshing attempts, this part of the anti-roll bar 

was unable to be meshed correctly and cohesively. It was decided that this part of the 
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anti-roll bar did not contribute significantly to the torsion or bending of the anti-roll bar, 

nor did it pose a significant risk of bending. Thus, this portion was modeled as a nodal 

rigid body (which is not visible in pictures). The meshed model of the anti-roll bar is 

shown in Figure B-3.  

 

 
Figure B-3. Meshed Model of the Anti-Roll Bar 

B.3.1 Anti-Roll Bar Issues 

While a solid model of the roll bar had been developed, the constraints that 

control the motion of the ends of the anti-roll bar must be better defined. The complicated 

connection between the pin and the lower A-arm would require a limited-motion, three-

degree-of-freedom joint with increased resistance as it deflects from the vertical 

orientation. A similar joint would have to be constructed between the pin and the anti-roll 

bar. Thus, despite having a new model of a roll bar, without the constraints to add to it, 

the model could not be implemented. 
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B.3.2 Future Work 

Further work is yet to be performed with this sway bar model to determine if it 

improved the model behavior. Physical testing must be conducted on an anti-roll bar to 

verify that the new anti-roll bar provides better results than the previous model. Further 

research also must be conducted into determining better constraints for the roll-bar 

model. Work with this model was ceased, as it would require significant time and 

resources to configure and constrain a more accurate roll bar in the 2000P model, and this 

was outside of the scope of the project. 

B.4 Conclusions 

Concerns arose with the anti-roll bar model and constraints in the C2500 vehicle 

model. The complicated constraints applied to the anti-roll bar in the physical vehicle 

were insufficiently modeled. As such, the joint models were reviewed in the model, and a 

C2500 roll bar was modeled using solid elements for further testing. In future simulations 

with this vehicle, further research should be conducted on the constraints on the actual 

anti-roll bar and the various methods to implement those constraints into the model. 
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